Курсовая работа: Анализ дискретной системы
w(11)=δ(11)+δ(11-1)+δ(11-2)+δ(11-3)+0,5*w(11-1)+0,3*w(11-2)
w(11)=0+0+0+0+0,5*0,73+0,3*0,86=0,62
При n = 12 импульсная характеристика системы будет равна
w(12)=δ(12)+δ(12-1)+δ(12-2)+δ(12-3)+0,5*w(12-1)+0,3*w(12-2)
w(12)= 0+0+0+0+0,5*0,62+0,3*0,73=0,53
При n = 13 импульсная характеристика системы будет равна
w(13)=δ(13)+δ(13-1)+δ(13-2)+δ(13-3)+0,5*w(13-1)+0,3*w(13-2)
w(13)=0+0+0+0+0,5*0,53+0,3*0,62=0,45
При n = 14 импульсная характеристика системы будет равна
w(14)=δ(14)+δ(14-1)+δ(14-2)+δ(14-3)+0,5*w(14-1)+0,3*w(14-2)
w(14)=0+0+0+0+0,5*0,45+0,3*0,52=0,38
При n = 14 импульсная характеристика системы будет равна
w(15)=δ(15)+δ(15-1)+δ(15-2)+δ(15-3)+0,5*w(15-1)+0,3*w(15-2)
w(15)=0+0+0+0+0,5*0,38+0,3*0,45=0,32
Рисунок 1: импульсная характеристика
Задание III . Переходная характеристика
Найдем переходную характеристику – это реакция системы на входное воздействие в виде дискретной функции единичного скачка, т.е.
если x (n ) = h (n ), то y (n ) = g (n ), где
Получим для нашей системы
g ( n )=1* h ( n )+1* h ( n -1)+1* h ( n -2)+1* h ( n -3)+0,5* g ( n -1)+0,3* g ( n -2)
При этом мы предполагаем, что наша система каузальная или физически реализуемая , что означает, что переходная характеристика должна быть равна g(n ) = 0 при отрицательных значениях n .
При n = 0 переходная характеристика системы будет равна
g(0)=h(0)+h(0-1)+h(0-2)+h(0-3)+0,5*g(0-1)+0,3*g(0-2)
g(0)=1+0+0+0+0+0=1