Курсовая работа: Аналіз теоретичної бази інтерполювання функції
Звідси
,
тобто .
Розмір визначаємо методом послідовних наближень як границю послідовності:
,
де
За початкове наближення приймаємо
. (10)
Для -го наближення маємо:
. (11)
На практиці ітераційний процес продовжують доти, поки не установляться значення, що відповідають необхідній точності, причому , де – останнє зі знайдених наближень. Знайдемо , визначаємо по формулі
,
звідки
. (12)
Ми застосували метод ітерації для розв’язку задачі оберненої інтерполяції, користуючись першою інтерполяційною формулою Ньютона. Аналогічно можна застосувати цей спосіб і до другої формули Ньютона:
.
Звідси
Позначимо – початкове наближення.
Для -го наближення маємо:
(13)
Знайдемо
,
визначимо по формулі [2,3]
.
Далі розглянемо запропоновану інтерполяційну формулу Бесселя. Вона подібна до інтерполяційної формули Стірлінга і обидві вони є похідними від першої та другої інтерполяційних формул Гаусса.
1.5 Інтерполяційна формула Бесселя
Часто використовується інтерполяційна формула Бесселя, яка служить для знаходження значення функції у міжвузловій точці. Для виведення цієї формули скористаємось другою інтерполяційною формулою Гаусса: