Курсовая работа: Частотний (спектральний) опис детермінованих сигналів

Рисунок 4 – Одинокий (а) та періодичний (б) імпульсні сигнали однакової форми

Отже, (23)

Збільшуючи період до нескінченності, отримаємо в границі нескінченно малі амплітуди гармонічних складових, сума яких дає початкову неперіодичну функцію , задану в інтервалі

Кількість гармонічних складових, що входитимуть у ряд Фур'є, буде при цьому нескінченно велика, тому що при основна частота функції . Це означає, що віддаль по осі частот між спектральними лініями на спектральних діаграмах (яка дорівнює основній частоті ) стає нескінченно малою, а спектр – суцільним. Отже при спектральному поданні імпульсних неперіодичних сигналів отримуємо суцільний спектр, який складається з нескінченно великої кількості гармонік із нескінченно малими амплітудами.

Виразимо сказане раніше математично. Амплітуди косинусних та синусних складових k-ї гармоніки періодичного сигналу описуємо виразами:


(24a)

(24б)

де (25)

Якщо період T зростає до нескінченності, то вирази (24 а,б), (25) повинні зберігати свій сенс, проте частота прямуватиме до нуля, і її необхідно замінити нескінченно малою величиною Крім того, добуток при очевидно, може набирати довільних значень і буде неперервною (а не дискретною) функцією k . Тому величину слід розглядати як неперервну змінну частоту , яка змінюється від нуля до нескінченності.

Ураховуючи сказане, коефіцієнти Фур’є для нескінченно великого часового інтервалу розкладу наберуть вигляду:

(26 а)

(26 б)

Із (26 a,б) випливає, що кожна синусна та косинусна складова має нескінченно малу амплітуду.

Введемо позначення:

(27 а)

(27 б)

Тоді вирази (26a,б) відповідно набирають вигляду:

(28а)

(28б)

Співвідношення (27a,б) називають відповідно косинус-перетворенням Фур’є та синус-перетворенням Фур’є.

Із (28a,б) також випливає, що результуючі амплітуди складових спектра на довільній частоті визначаємо співвідношенням:

(29)

а їх початкові фази:

(30)

У виразі (29) введено позначення:

(31)

Як бачимо з (29), амплітуди d A() є нескінченно малі, тому для опису частотних властивостей імпульсного сигналу використовують поняття спектральної густини. Слід відзначити, що спектральна густина – не спектр, а лише спектральна характеристика імпульсу, тому що на кожній конкретній частоті енергія імпульсу та амплітуда відповідної спектральної складової дорівнює нулеві.

Справді, із (29) отримуємо:

(32)

К-во Просмотров: 350
Бесплатно скачать Курсовая работа: Частотний (спектральний) опис детермінованих сигналів