Курсовая работа: Частотно-временной анализ сигналов

Нулевое среднее. Равенство нулю нулевого момента

или, что иногда необходимо – равенство нулю момента m-го порядка


Это – вейвлеты m-го порядка, позволяющие анализировать более тонкую структуру сигнала, подавляя медленно изменяющиеся его составляющие.


3. Прямое и обратное преобразование Фурье

При

- прямое преобразование Фурье

- обратное преобразование Фурье.

Комплексная функцияимеет смысл спектральной плотности, ее иногда называют непрерывным спектром Фурье-функции f(t).

Также как и в случае периодической функции, предполагается, что f(t) удовлетворяет условиям Дирихле или, что эквивалентно, абсолютно интегрируема и удовлетворяет условию Дини.

Отметим также, что:


4. Дискретное вейвлет-преобразование

Представление функции f(t) через ее непрерывное вейвлет – преобразование является избыточным. В задачах обработки информации, встречающихся на практике, сигнал, во-первых, имеет ограниченную полосу и, во-вторых, допускаются те или иные погрешности в получаемых результатах. Поэтому используют дискретное представление непрерывных сигналов, при которых параметры преобразования, в данном случае a и b, приобретают дискретные значения. Вейвлет-преобразование, при котором значения a и b дискретны, называют дискретным вейвлет-преобразованием (DWT - Discrete Wavelet Transform).

4.1 Дискретизация масштаба

Рассмотрим сначала случай дискретного масштаба a и положим . Это равноценно разбиению частотной оси на поддиапазоны (частотные полосы). Предположим, что (это можно сделать всегда, умножив функцию ψ на некоторый модуляционный множитель (см.). Тогда частотное окно будет равно:

а центральная частота m-го вейвлета:

.


Базисом для DWT является функция, полученная из

()

при :

.

Если справедливо и если достаточно быстро затухает, то любая функция из L2 может быть представлена в виде дискретной по последовательности

(3.5.2.)

К-во Просмотров: 493
Бесплатно скачать Курсовая работа: Частотно-временной анализ сигналов