Курсовая работа: Число как основное понятие математики
Позднее Эйлер, Ламберт показали, что иррациональные числа можно представить бесконечными непериодическими десятичными дробями (например, π = 3,141592…).
Свое дальнейшее развитие теория иррациональных чисел получила во второй половине XIX века в трудах Дедекинда, Кантора и Вейерштрасе в связи с потребностями математического анализа.
Рациональные и иррациональные числа на 3-ем уровне обобщения образовали действительные числа.
3.2. Алгебраические и трансцендентные числа
Действительные числа иногда подразделяют также на алгебраические и трансцендентные.
Алгебраическими называют числа, которые являются корнями алгебраических многочленов с целыми коэффициентами, например, , , 4, . Все остальные (неалгебраические) числа относятся к трансцендентным. Так как каждое рациональное число p/q является корнем соответствующего многочлена первой степени с целыми коэффициентами qx –p, то все трансцендентные числа иррациональны.
Выделим характерные особенности рассмотренных (натуральных, рациональных, действительных) чисел: они моделируют только одно свойство – количество; они одномерны и все изображаются точками на одной прямой, называемой координатной осью.
4. Комплексные числа
4.1. Мнимые числа
Еще более странными, чем иррациональные, оказались числа новой природы, открытые итальянским ученым Кардано в 1545 году. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , . Нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что· = -.
Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и старался не употреблять.
Долгое время эти числа считали невозможными, несуществующими, воображаемыми. Декарт назвал их мнимыми, Лейбниц – «уродом из мира идей, сущностью, находящейся между бытием и небытием».
В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины.
Мнимым числам не было места на координатной оси. Однако ученые заметили, что если взять действительное число b на положительной части координатной оси и умножить его на , то получим мнимое число b, неизвестно где расположенное. Но если это число еще раз умножить на , то получим -b, то есть первоначальное число, но уже на отрицательной части координатной оси. Итак, двумя умножениями на мы перебросили число b с положительного в отрицательные, и ровно на середине этого броска число было мнимым. Так нашли место мнимым числам в точках на мнимой координатной оси, перпендикулярной к середине действительной координатной оси. Точки плоскости между мнимой и действительной осями изображают числа, найденные Кардано, которые в общем виде a + b·i содержат действительные числа а и мнимые b·i в одном комплексе (составе), поэтому называются комплексными числами.
Это был 4-ый уровень обобщения чисел.
Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVII веков была построена общая теория корней n-ных степеней сначала из отрицательных, а затем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра:
С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг.
Леонард Эйлер вывел в 1748 году замечательную формулу:
,
которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Эйлера можно было возводить число е в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos комплексных чисел, вычислять логарифмы таких чисел и т.д.
Долгое время даже математики считали комплексные числа загадочными и пользовались ими только для математических манипуляций. Так, швейцарский математик Бернулли применял комплексные числа для решения интегралов. Чуть позже с помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, к примеру, в теории колебаний материальной точки в сопротивляющейся среде.
4.2. Геометрическое истолкование комплексных чисел
Около 1800-го года сразу несколько математиков (Вессель, Арган, Гаусс) поняли, что комплексными числами можно моделировать векторные величины на плоскости.
Если действительные числа (состоящие из одного элемента) одномерны – они размещаются на одной координатной оси. Комплексные числа состоят из двух элементов, для их представления необходима уже плоскость и две координатные оси. Это значит, что они двумерны.
Оказалось, что комплексное число z = a + b · i можно изобразить точкой М(a,b) на координатной плоскости. Позднее выяснили, что удобнее всего изображать число не самой точкой М, а в виде вектора , идущего из начала координат в точку с координатами а и b. Вектор можно задавать не только его координатами a и b, но также длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом a = r · cos φ, b = r · sin φ и число z принимает вид z = r ·(cos φ + i · sin φ), который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число φ называют аргументом z и обозначают Arg Z. Заметим, что если z = 0, значение Arg Z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде z = r · eiּφ (показательная форма комплексного числа)
Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
5. Векторные числа
В дальнейшем стали разыскивать некие трехмерные числа, которые моделировали бы векторные величины в пространстве с его тремя координатными осями.