Курсовая работа: Число как основное понятие математики

Позднее Эйлер, Ламберт показали, что иррациональные числа можно представить бесконечными непериодическими десятичными дробями (например, π = 3,141592…).

Свое дальнейшее развитие теория иррациональных чисел получила во второй половине XIX века в трудах Дедекинда, Кантора и Вейерштрасе в связи с потребностями математического анализа.

Рациональные и иррациональные числа на 3-ем уровне обобщения образовали действительные числа.

3.2. Алгебраические и трансцендентные числа

Действительные числа иногда подразделяют также на алгебраические и трансцендентные.

Алгебраическими называют числа, которые являются корнями алгебраических многочленов с целыми коэффициентами, например, Число как основное понятие математики, Число как основное понятие математики, 4Число как основное понятие математики, Число как основное понятие математики. Все остальные (неалгебраические) числа относятся к трансцендентным. Так как каждое рациональное число p/q является корнем соответствующего многочлена первой степени с целыми коэффициентами qx –p, то все трансцендентные числа иррациональны.

Выделим характерные особенности рассмотренных (натуральных, рациональных, действительных) чисел: они моделируют только одно свойство – количество; они одномерны и все изображаются точками на одной прямой, называемой координатной осью.

4. Комплексные числа

4.1. Мнимые числа

Еще более странными, чем иррациональные, оказались числа новой природы, открытые итальянским ученым Кардано в 1545 году. Он показал, что система уравнений Число как основное понятие математики, не имеющая решений во множестве действительных чисел, имеет решения вида Число как основное понятие математики, Число как основное понятие математики. Нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, чтоЧисло как основное понятие математики· Число как основное понятие математики= -Число как основное понятие математики.

Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и старался не употреблять.

Долгое время эти числа считали невозможными, несуществующими, воображаемыми. Декарт назвал их мнимыми, Лейбниц – «уродом из мира идей, сущностью, находящейся между бытием и небытием».

В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины.

Мнимым числам не было места на координатной оси. Однако ученые заметили, что если взять действительное число b на положительной части координатной оси и умножить его на Число как основное понятие математики, то получим мнимое число bЧисло как основное понятие математики, неизвестно где расположенное. Но если это число еще раз умножить на Число как основное понятие математики, то получим -b, то есть первоначальное число, но уже на отрицательной части координатной оси. Итак, двумя умножениями на Число как основное понятие математикимы перебросили число b с положительного в отрицательные, и ровно на середине этого броска число было мнимым. Так нашли место мнимым числам в точках на мнимой координатной оси, перпендикулярной к середине действительной координатной оси. Точки плоскости между мнимой и действительной осями изображают числа, найденные Кардано, которые в общем виде a + i содержат действительные числа а и мнимые i в одном комплексе (составе), поэтому называются комплексными числами.

Это был 4-ый уровень обобщения чисел.

Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVII веков была построена общая теория корней n-ных степеней сначала из отрицательных, а затем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра:

Число как основное понятие математики

С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг.

Леонард Эйлер вывел в 1748 году замечательную формулу:

Число как основное понятие математики,

которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Эйлера можно было возводить число е в любую комплексную степень. Любопытно, например, что Число как основное понятие математики. Можно находить sin и cos комплексных чисел, вычислять логарифмы таких чисел и т.д.

Долгое время даже математики считали комплексные числа загадочными и пользовались ими только для математических манипуляций. Так, швейцарский математик Бернулли применял комплексные числа для решения интегралов. Чуть позже с помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, к примеру, в теории колебаний материальной точки в сопротивляющейся среде.

4.2. Геометрическое истолкование комплексных чисел

Около 1800-го года сразу несколько математиков (Вессель, Арган, Гаусс) поняли, что комплексными числами можно моделировать векторные величины на плоскости.

Если действительные числа (состоящие из одного элемента) одномерны – они размещаются на одной координатной оси. Комплексные числа состоят из двух элементов, для их представления необходима уже плоскость и две координатные оси. Это значит, что они двумерны.

Оказалось, что комплексное число z = a + b · i можно изобразить точкой М(a,b) на координатной плоскости. Позднее выяснили, что удобнее всего изображать число не самой точкой М, а в виде вектора Число как основное понятие математики, идущего из начала координат в точку с координатами а и b. Вектор Число как основное понятие математикиможно задавать не только его координатами a и b, но также длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом a = r · cos φ, b = r · sin φ и число z принимает вид z = r ·(cos φ + i · sin φ), который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают Число как основное понятие математики. Число φ называют аргументом z и обозначают Arg Z. Заметим, что если z = 0, значение Arg Z не определено, а при z ≠ 0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде z = r · eφ (показательная форма комплексного числа)

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.

5. Векторные числа

В дальнейшем стали разыскивать некие трехмерные числа, которые моделировали бы векторные величины в пространстве с его тремя координатными осями.

К-во Просмотров: 591
Бесплатно скачать Курсовая работа: Число как основное понятие математики