Курсовая работа: Число как основное понятие математики

6. Матричные числа

Алгебраические операции над векторными величинами создали многоэлементные числовые объекты, названные по предложению Эйнштейна тензорными величинами. Для их моделирования Артур Кэли в 1850 году ввел числа, в которых элементы (более трех) записывались уже квадратными и прямоугольными таблицами (матрицами) и рассматривались как единый числовой объект.

Векторные числа + тензорные величины породили матричные числа. Это был 6-ой уровень обобщения чисел.

Выделим особенность всех сложных (комплексных, векторных, матричных) чисел: они моделируют сразу два свойства – количество и направление моделируемых величин.

7. Трансфинитные числа

Наконец, в 1883 году н

К-во Просмотров: 594
Бесплатно скачать Курсовая работа: Число как основное понятие математики