Курсовая работа: Диференційні рівняння як основа математичного опису енергетичної системиЕкспертна система контролю

DECLARE SUB KUTT (T!, X!, Y!, A%, B%, H!, N%, E!, C%, X(), Y(), T(), KX1!, KY1!, KX2!, KY2!, KX3!, KY3!, KX4!, KY4!)

DECLARE SUB GRAF (T!, X!, Y!, A%, B%, H!, N%, E!, C%, X(), Y(), T(), LX3!, LY3!, LX2!, LY2!, LX1!, LY1!, XP!, YP!, XK!, YK!, MPX!, MPY!, MKX!, MKY!, XK1!, YK1!)

INPUT "C"; C%

E! = C% * 10 ^ (-4)

H! = E! ^ (1 / 4)

CONST A% = 0: CONST B% = 1

DIM SHARED T!(2000), X!(2000), Y!(2000), KX1!(2000), KY1!(2000), KX2!(2000), KY2!(2000), KX3!(2000), KY3!(2000), KX4!(2000), KY4!(2000)

DIM SHARED LX1!(2000), LY1!(2000), LX2!(2000), LY2!(2000), LX3!(2000), LY3!(2000), XP!(2000), YP!(2000), XK!(2000), YK!(2000), MPX!(2000), MPY!(2000), MKX!(2000), MKY!(2000), XK1!(2000), YK1!(2000)

T(0) = 0: X(0) = 0: Y(0) = 0

CALL KUTT(T!, X!, Y!, A%, B%, H!, N%, E!, C%, X(), Y(), T(), KX1!, KY1!, KX2!, KY2!, KX3!, KY3!, KX4!, KY4!)

FOR I% = 0 TO N%

PRINT T(I%), X(I%), Y(I)

NEXT I%

INPUT L!

CALL GRAF(T!, X!, Y!, A%, B%, H!, N%, E!, C%, X(), Y(), T(), LX3!, LY3!, LX2!, LY2!, LX1!, LY1!, XP!, YP!, XK!, YK!, MPX!, MPY!, MKX!, MKY!, XK1!, YK1!)

INPUT P!

CALL MILN(T!, X!, Y!, A%, B%, H!, N%, E!, C%, X(), Y(), T(), LX3!, LY3!, LX2!, LY2!, LX1!, LY1!, XP!, YP!, XK!, YK!, MPX!, MPY!, MKX!, MKY!, XK1!, YK1!)

FOR I% = 3 TO N%

IF (MPX(I% + 1) - MKX(I% + 1)) > E! THEN

XK1(I% + 1) = X(I% - 1) + (1 / 3) * H! * (MKX(I% + 1) + 4 * LX3(I%) + LX2(I% - 1))

PRINT T(I% + 1), XK1(I% + 1)

ELSE

XP(I% + 1) = XK(I% + 1)

PRINT T(I% + 1), XK(I% + 1)

END IF

FOR I% = 3 TO N%

IF (MPY(I% + 1) - MKY(I% + 1)) > E! THEN

YK1(I% + 1) = Y(I% - 1) + (1 / 3) * H! * (MKY(I% + 1) + 4 * LY3(I%) + LY2(I% - 1))

PRINT T(I% + 1), YK1(I% + 1)

К-во Просмотров: 401
Бесплатно скачать Курсовая работа: Диференційні рівняння як основа математичного опису енергетичної системиЕкспертна система контролю