Курсовая работа: Дослідження лінійно впорядкованого простору ординальних чисел
Визначення 1.13. Топологічним простором називається пара (Х, ), що складається із множини Х и деякого сімейства
підмножин множини Х, що задовольняє наступним умовам:
множина Х и Æ належать ;
перетинання кінцевого числа множин з належать
;
об'єднання будь-якого числа множин з належить
.
Умови 1 – 3 називаються аксіомами топологічного простору, його елементи – крапками простору. Підмножини множини Х, що належать сімейству , називаються відкритими в Х. Сімейство
відкритих підмножин простору Х називається також топологією на Х.
Визначення 1.14. Замкнутою множиною називається множина, що є доповненням до відкритого.
Визначення 1.15. Околицею крапки х топологічного простору називається будь-яка відкрита множина U, що містить х.
Визначення 1.16. Топологічний простір Х називається компактним, якщо з будь-якого його покриття відкритими множинами можна виділити кінцеве під покриття.
Визначення 1.17. Топологічний простір Х називається компактним, якщо будь-яка його центрована система замкнутих множин у Х має непусте перетинання.
Визначення 1.16 і 1.17 рівносильні ([5]).
Визначення 1.18. Простір Х називається локально компактним, якщо кожна крапка має околицю, замикання якої компактно.
Визначення 1.19. Топологічний простір Х називається розрахункове компактним, якщо з кожного рахункового відкритого покриття простору Х можна вибрати кінцеве підпокриття.
Визначення 1.20. Топологічний простір Х називається розрахункове компактним, якщо кожне його нескінченна підмножина містить хоча б одну граничну крапку.
Визначення 1.19 і 1.20 рівносильні ([5]).
Визначення 1.21. Простір називається компактификацією топологічного простору Х, якщо:
1) компактно;
2) Х – підпростір ;
3) Х щільно в.
Визначення 1.22. Топологічний простір Х називається Т 1-простором, якщо для кожної пари різних крапок х1, х2 існує відкрита множина
, таке, що х1
і х2
.
Визначення 1.23. Якщо будь-які дві різні крапки х и в топологічного простору Х мають непересічні околиці, то простір Х називається хаусдорфовим простором або Т 2-простором.
Визначення 1.24. Топологічний простір Х називається регулярним простором, або Т 3-простором, якщо Х є Т 1-простір і для будь-якого й кожного замкнутої множини
, такого, що
, існують відкриті множини U1 і U2, такі, що
1,
2 і U1
U2 = Æ.
Визначення 1.25. Топологічний простір Х називається тихоновським простором, або Т3- простором, якщо Х є Т 1-простір і для будь-якого
й будь-якого замкнутої множини
, такого, що
, існує безперервна функція f:
, така, що f(x)=0 і f(y)=1 для
.
Визначення 1.26. Топологічний простір Х називається нормальним, або Т 4-простором, якщо для кожної пари непересічних замкнутих множин А и В існують непересічні відкриті множини U і V такі, що А U, B
V.
РОЗДІЛ 2. Лінійно впорядкований простір ординальних чисел
§1. ЦІЛКОМ УПОРЯДКОВАНІ МНОЖИНИ І ЇХНІ ВЛАСТИВОСТІ
Розглянемо цілком упорядковані множини і їхні властивості.
Пропозиція 1.1. Усяка підмножина цілком упорядкованої множини саме є цілком упорядкована множина (очевидно).
Пропозиція 1.2. Якщо f – ізоморфізм цілком упорядкованої множини А в себе, то для будь-якого елемента х А виконується нерівність f (x)
x. (1)
Доказ.