Курсовая работа: Дослідження лінійно впорядкованого простору ординальних чисел

Таким чином, одержали наступні нерівності: х0 < x1 і f (x0) < x0 . Ці нерівності суперечать визначенню елемента х1, як найменшого з елементів х множини А, не задовольняючій умові f (x) < x. :

Визначення 2.1. Початковим відрізком, що відтинається елементом а А від лінійно впорядкованої множини А, називається множина Аа = {x | x A, x < a}.

Пропозиція 1.3. Нехай А’ – довільна підмножина цілком упорядкованої множини А. Тоді множина А не ізоморфно ніякому відрізку множини А’.

Доказ:

Будемо доводити методом від противного й припустимо, що існує ізоморфізм цілком упорядкованої множини А в деякий відрізок Ах’ підмножини А’ А. Тоді f (x) Ax’. Отже, f (x) < x – протиріччя із пропозицією 1.2. ■

Наслідок 1.4. Два різних відрізки цілком упорядкованої множини не можуть бути ізоморфні між собою.

Доказ.

Нехай Ах і Агов – два різних відрізки цілком упорядкованої множини А. Тому що Ах і Агов різні, а множина А – цілком упорядкована, те х и в порівнянні, при цьому х в. Нехай для визначеності x < y. Тоді Ах – відрізок множини Агов і за пропозицією 1.3 Ах і Агов не можуть бути ізоморфними. :

Пропозиція 1.5. Існує не більше одного ізоморфізму однієї цілком упорядкованої множини на інше.

Доказ.

Будемо доводити методом від противного й припустимо, що f і g – два різних ізоморфізми цілком упорядкованої множини А на цілком упорядковану множину В. Тому що f і g різні, то існує а А: b = f (a) b’ = g (a). Нехай для визначеності b < b’. При всякому ізоморфізмі f множини А на множину У відрізок Ах А переходить у відрізок Ву В, де в = f (х). Тому відрізок Аа А подібний до відрізків

Вb У и Вb’ B, тобто Bb ізоморфний Aa і Аа ізоморфний Вb’. Отже, відрізок Вb ізоморфний відрізку Bb’ , але це суперечить наслідку 1.4. ■

Визначення 2.2. Якщо для елемента а А існує елемент а' =

= inf {x | a < x, x A}, те а' називається безпосередньо наступним за а.

Пропозиція 1.6. Якщо А – цілком упорядкована множина, то в кожного елемента множини А, крім найбільшого, є безпосередньо наступний за ним елемент.

Доказ.

Візьмемо деякий елемент а А, нехай а не є найбільшим елементом. Розглянемо множину {x | x A, x > а}. За пропозицією 1.1 воно має найменший елемент а', що є точною нижньою гранню розглянутої множини. Отже, а' треба за а. :


§2. КІНЦЕВІ ЛАНЦЮГИ І ЇХНІ ПОРЯДКОВІ ТИПИ

Пропозиція 2.1. Множина з n елементів можна лінійно впорядкувати n! способами.

Доказ.

Для доказу досить застосувати формулу числа перестановок для n-елементної множини: Рn=n! :

Пропозиція 2.2. Будь-яке кінцеве лінійно впорядкована множина є цілком упорядкованою множиною.

Доказ.

Нехай є множина А – кінцеве лінійно впорядкована множина. Треба довести, що А є цілком упорядкованим, тобто будь-яку його підмножину має найменший елемент. Розглянемо довільну множину В, що є підмножиною множини А. Припустимо, що воно не має найменшого елемента. Візьмемо який-небудь елемент множини В. Позначимо його через b1. Тому що в У немає найменшого елемента, то в ньому є елемент b2, такий, що b2 < b1. Елемент b2 не є найменшим елементом в В, тому є елемент b3<b2. Повторюючи це міркування, будуємо для кожного натурального n елемент bn+1 B, причому bn+1 < bn.

Таким чином, одержали нескінченну множину {b1, b2, . . . ,bn, . . } , але це суперечить тому, що В – підмножину кінцевої множини А и, отже, саме є кінцевим. :

Пропозиція 2.3. Будь-які два кінцеві ланцюги, що складаються з n елементів, ізоморфні.

Доказ.

нехай є два кінцеві ланцюги з n елементів:

a1 < a2 <…<an,

К-во Просмотров: 252
Бесплатно скачать Курсовая работа: Дослідження лінійно впорядкованого простору ординальних чисел