Курсовая работа: Электрические ракетные ионные двигатели

Общая теория электрических ракетных двигателей (ЭРД)

Общие принципы ЭРД

Основоположник космонавтики К.Э. Циолковский впервые в 1911 г. высказал мысль, что с помощью электричества можно придавать громадную скорость частицам, выбрасываемым из реактивного прибора. Позже класс двигателей, основанных на этом принципе, стали называть электрическими ракетными двигателями [10]. Однако до сих пор не существует общепринятого и вполне однозначного определения ЭРД.

В Физическом энциклопедическом словаре ЭРД – это ракетный двигатель, в котором рабочим телом служит ионизированный газ (плазма), ускоряемый преимущественно электромагнитными полями; в энциклопедии «Космонавтика» – это двигатель, в котором в качестве источника энергии для создания тяги используется электрическая энергия, вырабатываемая бортовой энергоустановкой космического аппарата, в Политехническом словаре приводится третий вариант определения ЭРД: это реактивный двигатель, в котором рабочее тело разгоняется до высоких скоростей с использованием электрической энергии.

Наиболее логично электрическими ракетными двигателями называть двигатели, в которых для разгона рабочего тела используется электрическая энергия, причем источник энергии может находиться как на борту космического аппарата (КА), так и вне его. В последнем случае энергия либо непосредственно подводится к ускоряющей системе от внешнего источника, либо передается на КА с помощью сфокусированного пучка электромагнитного излучения.

Такого взгляда на ЭРД придерживались и пионеры космонавтики – Ю.В. Кондратюк, Г. Оберт, Ф.А. Цандер, В.П. Глушко. В работе Ю.В. Кондратюка1 рассматривался КА, на который падает сконцентрированный луч света, и электрический реактивный двигатель, основанный на электростатическом ускорении крупных заряженных частиц, например, графитового порошка. В той же работе указаны конкретные способы повышения эффективности электродинамического ускорителя массы (ЭДУМ) в применении плазменного контакта и разгона в вакууме. В 1929 г. Г. Оберт2 описал ионный двигатель. В 1929–1931 гг. впервые был создан и испытан в лаборатории импульсный электротермический ЭРД, автором которого является основоположник ракетного двигателестроения В.П. Глушко. Им же был предложен и сам термин «электрический ракетный двигатель».

Однако дальнейшего развития в тот период работы по ЭРД не получили из-за отсутствия легких и эффективных источников энергии. Эти работы были возобновлены в СССР и за рубежом после запуска в нашей стране в 1957 г. первого искусственного спутника Земли и первого полета в космос в 1961 г. человека – гражданина СССР Ю.А. Гагарина. В эти годы по инициативе С.П. Королева и И.В. Курчатова была принята, комплексная программа научно-исследовательских и опытно-конструкторских работ по ЭРД разных типов. Одновременно были развернуты работы по созданию эффективных источников энергии для КА (солнечные батареи, химические аккумуляторы, топливные элементы, ядерные реакторы, радиоизотопные источники). Основное направление исследований, сформулированных в этой программе, состояло в разработке научных основ и создании высокоэффективных образцов ЭРД, предназначенных для решения задач промышленного освоения околоземного космического пространства и обеспечения научных исследований Солнечной системы.

Наиболее важное значение для формирования современной теории ЭРД имели следующие научно-технические идеи.

Принцип электродинамического ускорения, предложенный в 1957 г. Л.А. Арцимовичем и его сотрудниками [2], был положен в основу ускорителей разных классов – импульсных ЭРД на газообразном и твердом рабочем веществе, стационарных сильноточных ЭРД.

Принцип бездиссипативного ускорения ионов в замагниченной плазме самосогласованным электрическим полем. Этот механизм реализуется в плазменных двигателях с азимутальным дрейфом электронов, в торцевых холловских двигателях, в определенной степени в импульсных двигателях с электромагнитным разгоном плазмы. В наиболее последовательной форме этот метод ускорения реализован в двигателе с анодным слоем (ДАС) – оптимальном варианте двигателей с азимутальным дрейфом электронов. В первоначальной форме идея ДАС была сформулирована А.В. Жариновым в конце 50-х годов; позже на основе этой идеи, дополненной рядом изобретений, были разработаны высокоэффективные двух- и одноступенчатые двигатели с азимутальным дрейфом.

В США Г. Кауфман предложил принцип плазменно-ионного двигателя (ПИД), в котором ионы также разгоняются продольным электрическим полем, однако в отличие от ДАС они предварительно вытягиваются из плазменного разряда с электронами, осциллирующими в продольном магнитном поле. Плазменно-ионный двигатель обладает высоким КПД и ресурсом, но проигрывает ДАС в универсальности и диапазоне регулирования рабочих характеристик.

В связи с проводившимися в последние годы проектными исследованиями космических солнечных электростанций возродился интерес к схемам ЭРД с подводом энергии от внешнего источника. Развивая идеи К.Э. Циолковского и Ю.В. Кондратюка, Г.И. Бабат1 в 1943 г. предложил использовать энергию, передаваемую на летательный аппарат в виде хорошо сфокусированного пучка СВЧ-излучения с земли или космического аппарата. В 1971 г. А. Кантровиц для тех же целей рассматривал лазерное излучение.

В 1975 г. Дж О'Нейл предложил использовать электродинамический ускоритель массы (ЭДУМ) для транспортировки в космос с поверхности Луны материалов, предназначенных для строительства космических солнечных электростанций. Очевидно, эти проекты ориентированы на решение задач отдаленной перспективы, строительства орбитальных объектов околоземной энергопроизводственной инфраструктуры.

Особенности двигательных установок с малой тягой

Разделение в ЭРД источника энергии и рабочего вещества позволяет преодолеть ограничение, присущее химическим двигателям, – относительно невысокую скорость истечения. Но, с другой стороны, если используется бортовой источник энергии, неизбежно возникает другое ограничение – сравнительно малая тяга. Поэтому, если не рассматривать пока особых случаев, например, световых двигателей, ЭРД следует отнести к классу двигателей малой тяги, которые способны обеспечить лишь небольшое ускорение, а потому пригодны дан выполнения различных транспортных операций непосредственно в космическом пространстве. ЭРД, как правило, – это космические ракетные двигатели малой тяги.

Если, например, двигатель развивает тягу 10 Н,; масса КА 10 т, то создаваемое им ускорение составит 10» 3 м/с2 , т.е. примерно 10» 4 g 0 ( go ускорение свободного падения на поверхности Земли). Разумеется, такой двигатель не пригоден для выведения космических аппаратов с Земли на орбиты искусственных спутников.

Эта ситуация может измениться, когда будут соз1аны эффективные лазерные двигатели или электродинамические ускорители массы, отличительная особенность которых состоит в том, что источник энергии не обязательно находится на борту КА. В этом случае должно говорить об ЭРД, который обеспечивает высокую скорость истечения и большое ускорение одновременно.

Чтобы выявить другие специфические особенности ЭРД как космических двигателей, рассмотрим задачу перехода между двумя околоземными круговыми орбитами. Обратимся к уравнению Циолковского

(1.1)
(1.1)

(1.1)

где и' и v– приращение скорости КА и скорость истечения рабочего вещества соответственно; Мо начальная масса КА; Мк = Мо mt масса К А на конечной орбите. Здесь t – время перехода между орбитами; т – расход массы рабочего вещества. Из (1.1) приращение скорости

(1.2)

Изменение кинетической энергии КА при полете происходит со скоростью

После подстановки значения w в последнее выражение из формулы 1.2

Получаем

(1.3)

(1.5)

Траектория перехода между двумя круговыми орбитами имеет вид разворачивающейся спирали. При полете в гравитационном поле Земли вследствие работы двигательной установки происходит превращение тяги ЭРД постоянно совпадает по направлению со скоростью КА; сила тяготения при этом всегда перпендикулярна вектору скорости.

Потенциальная энергия КА при его движении по круговой траектории в центральном поле Земли равна

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 328
Бесплатно скачать Курсовая работа: Электрические ракетные ионные двигатели