Курсовая работа: Электрические ракетные ионные двигатели

Показателем энергетической эффективности ионного источника является энергетическая цена иона q в пучке (или ускоренного иона), которая представляет собой отношение мощности N , потребляемой Ионным источником, к количеству ионов n, поступающих в ускоряющую систему за единицу времени.

Энергетическая цена ионов в пучке является одной из основных величин, определяющих энергетический КПД ионного двигателя. Энергия, затрачиваемая на ускорение иона в электростатической ускоряющей системе, равна eU ( U ускоряющая разность потенциалов

Другим важным показателем эффективности ионного источника является коэффициент использования массы, равный отношению массового расхода ионов из источника в ускоряющую систему т, – к полному массовому расходу рабочего вещества через источник т:

Доля рабочего вещества, равная 1 – Т)т , поступает в ионно-оптическую систему в виде нейтральных атомов с тепловыми скоростями порядка 103 м/с. Истечение нейтральных атомов не только приводит к малоэффективному использованию рабочего вещества и снижению экономичности двигателя, но и является основной причиной разрушения ускоряющего электрода ионно-оптической системы при длительной работе двигателя. Кроме того, нейтральные атомы могут конденсироваться и накапливаться на элементах ионного источника и электродах ионно-оптической системы, вызывая при этом паразитные токи и электрические пробои. Поэтому при создании ионных источников стремятся получить возможно более высокие значения коэффициента использования массы. В лучших ионных источниках для ЭРД тт = 0,9… 0,95. Если полный расход рабочего вещества выразить в токовых единицах (А), то КПД тт можно определить по формуле

Контактные ионные источники

Как уже говорилось, в контактных ионных источниках образование ионов происходит в результате поверхностной ионизации. В ионных электрических ракетных двигателях применяются контактные ионные источники с пористым ионизатором. Пористые ионизаторы изготавливаются различными способами, например, тонкие каналы-поры могут быть пробиты лазерным или электрическим лучом. В качестве ионизатора может быть использована многослойная сетка, сплетенная из тонких металлических нитей, а также совокупность параллельно расположенных проволочек. Однако наибольшее распространение получили пористые ионизаторы, изготовленные из мелкозернистого порошка тугоплавких металлов прессованием и последующим спеканием.

Начиная с 60-х годов проводятся теоретические и экспериментальные исследования поверхностной ионизации в пористых средах, разрабатываются модели процессов в порах с целью обоснования методов расчета и выбора оптимальных структур пористых ионизаторов. Теория пористых ионизаторов строится как непосредственное Продолжение и развитие основных представлений о поверхностной ионизации на гладких поверхностях.

Количественной характеристикой поверхностной ионизации в контактных ионных источниках является коэффициент поверхностной ионизации /3, представляющий собой отношение числа ионов «г -, испаряющихся с единицы поверхности в единицу времени, к числу атомов п, поступаю-ИИ на единицу поверхности за то же время:

Очевидно, ионизаторы контактных источников целесообразно изготовлять из металлов, имеющих возможно больший потенциал выхода электрона и обладающих способностью длительно работать в условиях вакуума при температурах до 1200–1500 К. Такими свойствами обладают тугоплавкие металлы, например, вольфрам, молибден, тантал, рений. Наиболее известны ионизаторы из вольфрама (Ф = 4,54 В) и молибдена (Ф = 4,2 В). Большими значениями потенциала выхода электрона обладают рений (4,9 В) и платина (5,4 В).

В качестве рабочего вещества в ионных двигателях обычно используются однозарядные ионы, и Ui представляет собой первый ионизационный потенциал. Известно, что наименьшими первыми ионизационными потенциалами обладают щелочные металлы: цезий (3,89 В), рубидий (4,18 В), калий (4,34 В), натрий (5,14 В), литий (5,39 В). Наиболее подходящим рабочим веществом для ионных двигателей с контактным источником является цезий, который обладает наименьшим потенциалом ионизации и наибольшим атомным весом среди щелочных металлов, что позволяет достигнуть больших значений коэффициента ионизации и плотности тяги двигателя.

Для адсорбированного атома щелочного металла характерны три квантовых состояния: ионное и два атомных, соответствующих двум противоположным ориентациям спина валентного электрона. Отношение статистических весов атомного и ионного состояний адсорбированного атома щелочных металлов равно двум, и уравнение Саха–Ленгмюра для коэффициента поверхностной ионизации принимает вид

При выборе пары материал ионизатора – рабочее вещество необходимо, конечно, учитывать и другие важные факторы, такие как совместимость (отсутствие химического взаимодействия во всем температурном диапазоне работы источника), стойкость в процессе длительной эксплуатации в космических условиях, технологичность, возможность получения достаточно больших ионных токов и др.

Эффективность поверхностной ионизации определяется не только разностью между потенциалом ионизации атомов и работой выхода электрона, но и температурой поверхности. Зависимость коэффициента поверхностной ионизации от температуры поверхности носит своеобразный характер. Особенностью поверхностной ионизации является существование узкого интервала температур, в котором коэффициент поверхностной ионизации скачкообразно возрастает от малых значений до значений, близких к единице, и далее с повышением температуры изменяется незначительно.

Поверхностная ионизация является «пороговым» процессом. Температура, при которой наблюдается резкое возрастание коэффициента поверхностной ионизации, называется пороговой температурой. Здесь подробно не рассматриваются процессы, объясняющие эту особенность поверхностной ионизации. Отметим только, что она связана с нелинейным характером температурной зависимости покрытия поверхности атомами рабочего вещества и с зависимостью от покрытия потенциала выхода электрона.

Характеристикой покрытия поверхности атомами является степень покрытия в, представляющая собой отношение поверхностной Плотности адсорбированных атомов S к поверхностной Плотности So , соответствующей образованию плотного моноатомного покрытия.

Сравнивая работу выхода вольфрама при разных значениях степени покрытия с потенциалом ионизации цезия, находим, что уже при в = = 0,09 UjФ = 0 и /3 «0,3, что недопустимо для ионных источников электроракетных двигателей. Последние должны работать при степени покрытия порядка 0,01.

Пороговая температура поверхностной ионизации зависит от плотности потока атомов к ионизирующей поверхности, поскольку при данной температуре поверхности поток атомов определяет степень покрытия. Для ионизации цезия на вольфраме соотношение между пороговой температурой и плотностью потока атомов имеет вид

Уравнение Саха–Ленгмюра получено в предположении, что у ионизирующей поверхности отсутствует внешнее электрическое поле. При приложении внешнего электрического поля, ускоряющего положительные ионы, сила притяжения иона к металлу уменьшается на eEl 4 ire 0 – напряженность внешнего электрического поля). Так как ион удерживается на металлической поверхности силой электрического изображения, то уменьшение работы, совершаемой при удалении иона от поверхности на бесконечность, в условиях внешнего электрического поля выражается формулой, аналогичной формуле Шоттки для термоэлектронной эмиссии:

Поры таких ионизаторов представляют собой переплетенные извилистые каналы с переменным поперечным сечением сложной формы. При теоретическом анализе процессов в пористом ионизаторе рассматривается упрощенная модель его пористой структуры. Предполагается, что поры имеют форму длинных цилиндрических каналов (капилляров) постоянного сечения. В работе [23] рассматриваются поры в виде аксиально-симметричных каналов с плавно изменяющимся радиусом.

Для описания пористой структуры контактных ионных источников обычно используются следующие параметры: средний диаметр пор, плотность распределения пор по диаметрам, среднее расстояние между краями пор (или среднее число пор, приходящееся на единицу площади) и открытая пористость (отношение суммарной площади пор на внешней поверхности ионизатора к полной площади ионизатора). Эти параметры определяются при изучении пористой структуры с помощью окулярного микроскопа.

На рис. 2.7 приведены типичные экспериментальные зависимости плотности ионного тока от температуры для пористых ионизаторов (материал ионизатора – вольфрам, рабочее вещество – цезий) при различных значениях расхода рабочего вещества. Там же представлена зависимость /, (Г) для сплошного ионизатора. Из рисунка следует, что для пористых ионизаторов зависимость плотности ионного тока от температуры ионизатора имеет тот же вид, что и для сплошных ионизаторов. Однако пороговые температуры для пористых ионизаторов

На рис 2.8 представлены экспериментальные зависимости относительного потока атомов njn (и = иа + Щ – суммарный поток атомов и ионов) от температуры ионизатора Т при тех же значениях расхода цезия, что и на рис. 2.7. Из рисунка следует, что доля атомов в общем потоке частиц из пористого ионизатора резко уменьшается при температурах выше 1050 °С и в области оптимальных температур составляет 1 – 4%. Отметим, что с ростом расхода пара рабочего вещества через нейтрализатор доля нейтральных атомов возрастает.

Экспериментальные кривые /. (Г) и иа (Г), построенные для нескольких значений расхода цезия, являются основными характеристиками пористых ионизаторов. Они позволяют выбрать оптимальный рабочий режим контактных ионных источников и определить их характеристики.

Результаты экспериментальных исследований пористых ионизаторов показали, что наилучшими показателями обладают образцы, изготовленные из вольфрамового порошка с небольшим разбросом диаметров сферических зерен. Плотность ионного тока, генерируемого такими источниками, может достигать 50 – 100 мА/см.

Физическая картина процессов в пористых ионизаторах весьма сложна, и существующие теоретические представления не позволяют описать ее в целом. Отдельные фрагменты теории пористых ионизаторов рассматриваются в ряде работ, например [25]. Объем книги не позволяет останавливаться на изложении современных теоретических представлений. Да и контактные ионные источники в последние годы не находят практического применения в работах по электроракетным двигателям. Наибольшее внимание уделяется сейчас газоразрядным ионным источникам

К-во Просмотров: 333
Бесплатно скачать Курсовая работа: Электрические ракетные ионные двигатели