Курсовая работа: Элементы системы управления сварочным манипулятором интегрированной системы
ЭС – элемент сравнения.
Рисунок 2.2 – Структурная схема КП в режиме переноса инструмента
В режиме переноса на привод подается сигнал номинальной скорости переноса и конечное положение режима по грубой шкале (с точностью до 0,5 оборотов вала двигателя) – . Контур положения в этом режиме замкнут через счетчик оборотов. Сигнал со счетчика оборотов () сравнивается с сигналом и при их совпадении режим переноса через ключ отключается и через ключи и с заданной задержкой включается режим слежения.
Передаточная функция в режиме переноса инструмента по положению равна:
(2.10)
Подставив численные значения в (2.9) и (2.10) получим:
При
.
При
.
При
.
При
.
Составим структурную схему механической части манипулятора по одной координате.
Механическая часть между валом двигателя и последующей подвижной платформой или инструментом имеет упругие связи и люфты, что приводит к механическим колебаниям инструмента при набросе (или снятии) скачка нагрузки. Не вдаваясь детально во все причины возникновения этих колебаний, в соответствии с [11], [44], [45] и др., в первом приближении, примем, что механические колебания по каждой координате описываются дифференциальным уравнением 2-го порядка.
Для дальнейших расчетов примем [7], [34]: ; .
Рисунок 2.3 – Структурная схема механической части манипулятора по одной координате
2.5 Моделирование АСУ манипулятором по одной координате
Уравнения состояния в векторно-матричной форме записи имеют следующий вид:
, (2.11)
где – матрица состояния (динамическая); – матрица управляющих воздействий (матрица входа).
Для определения элементов матрицы и составим схемы моделирования, в соответствии с алгоритмической схемой (рис. 2.2).
Рассмотрим контур скорости.
Режим разгона при переносе инструмента иллюстрируется схемой модели на рис. 2.4.
Рисунок 2.4 – Схема моделирования скорости в режиме переноса инструмента
Дифференциальные уравнения в режиме переноса инструмента примут вид: