Курсовая работа: Эволюция подходов к синтезу и структурной оптимизации электронных схем

, (23)

где Mi - B – i-й главный минор аддитивно обратной матрицы В.

В классе канонических схем второго порядка с двумя активными элементами необходимо выполнить логические и арифметические условия

(24)

и

(25)

которые приводят к четырем изоморфным схемам.

Первая группа изоморфных схем соответствует изменению индексов активных элементов, а вторая – конкретному виду функции (22) (индексы i и j меняются местами). В общем случае количество таких схем может быть определено через следующее соотношение:

структурный синтез генетический автоматизированный процедура

(26)

Как показывает опыт решения практических задач, именно изоморфизм затрудняет построение новых структур. Особенно это проявляется при их автоматизированном поиске.

Одним из возможных выходов из сложившегося положения является разложение функции (16) в форме (19) по виду характеристических полиномов решающих усилителей, которая совместно со структурой вектора Т позволяет осуществлять разветвление процедуры синтеза. Например, для звеньев второго порядка общий для числителя и знаменателя (19) полином будет иметь 6 вариантов своего формирования [5]:

(27)

Каждому из полученных разложений для конкретного числа активных элементов будут соответствовать только две принципиальные схемы, и, следовательно, при большом N существенно сократится перебор вариантов.

Так, для второго варианта разложения после формальных преобразований получим сигнальный граф, изображенный на рис. 4.

Рис. 4. Сигнальный граф схемы варианта 2

Таким образом, из рассмотрения исключены варианты, связанные с заменой индексов 1«2, 3«2, что и позволило получить единственную принципиальную схему. Анализ полученного решения показал значительно более низкое влияние частотных свойств активных элементов на ее параметры по сравнению с ранее известными схемами.

Приведенный подход позволяет, в частности, еще более сузить область поиска желаемых структур. Например, при построении звеньев второго порядка с действительными нулями коэффициента передачи, когда по соображениям чувствительности целесообразно отказаться от разностного принципа формирования затухания нуля передаточной функции, можно выделить специальный двухканальный тип частотозависимой цепи со вторым, четвертым и пятым вариантами разложения функции (7).

3. Развитие метода компонентных уравнений

Автоматизация процедур синтеза структур электронных схем направлена не только на исключение изоморфных решений и на преодоление специфических для данного класса устройств вычислительных проблем, связанных с разреженностью матриц.

Указанные трудности в значительной мере преодолеваются в случае применения ряда теоретических положений электрических цепей. Так, применение топологических принципов формирования коэффициентов передаточных функций не связано с матричными преобразованиями. Здесь достаточно оперировать с деревьями и прадеревьями цепей и при численных расчетах использовать только полную топологическую структуру либо ее модификацию [6, 10].

В основе метода лежит полная топологическая структура, которая выбирается исходя из особенностей решения поставленной задачи [8].

Например, при синтезе цепи с биквадратным входным сопротивлением в RLC-базисе используется утверждение Ботта-Даффина о полноте схемы, содержащей три конденсатора, два резистора и три индуктивности. Значительно труднее решается задача синтеза ARC-схемы. Здесь не сформулированы утверждения, отличающие структуры по тем или иным свойствам. Более того, сложно утверждать, что схема с большим числом активных элементов окажется лучше по совокупности признаков. В монографии [8], которая обобщила исследования в области синтеза ARC-схем по методу компонентных уравнений, предлагается решение задачи в следующей последовательности:

1. Выбирается схема полной топологической структуры с минимальным числом активных элементов.

2. Задается минимальное число узлов схемы полной топологической структуры. В отличие от RLC-базиса, здесь невозможно заранее вычислить минимальное число узлов. Однако оценки, приведенные в [2], позволяют в определенной степени задать начальное приближение. Исходя из способа включения активного элемента определяются те алгебраические дополнения, которые не влияют на принципы конструирования компонентных уравнений, и составляется усеченная топологическая структура.

3. Для усеченной топологической структуры с выбранным числом узлов одним из методов оптимизации определяются проводимости, включая и номиналы конденсаторов пассивной подсхемы.

4. Решение с учетом численных значений R и C уточняется путем устранения бесконечно малых проводимостей.

5. При получении неудовлетворительного результата последователь-но увеличивается число узлов и активных элементов схемы полной топологической структуры.

Настоящая процедура, естественно, не исключает изоморфных решений, однако заметно упрощает реализацию пассивных подсхем и, следовательно, компонент матрицы В и вектора А.

Несмотря на то, что здесь не удалось получить новых в практическом отношении схем, обобщение результатов многолетних исследований в области топологического анализа и синтеза электронных схем, апробация методов оптимизации оказали заметное влияние на пути решения обсуждаемой проблемы.

4. Преобразование подобия частных решений

К-во Просмотров: 317
Бесплатно скачать Курсовая работа: Эволюция подходов к синтезу и структурной оптимизации электронных схем