Курсовая работа: Физические вопросы строения и функционирования биологических мембран
Высвобождение энергии макроэргической связи происходит на четвертом этапе работы Са2+ АТФ-азы при гидролизе Е-Р. Эта энергия отнюдь не растрачивается вхолостую (т.е. не переходит в тепло), а используется на изменение константы связывания ионов кальция с ферментом. Перенос кальция с одной стороны мембраны на другую связан, таким образом, с затратой энергии, которая может составить 37,4 - 17,8 = 19,6 кДж/моль. Ясно, что энергия гидролиза АТФ хватает на перенос двух ионов кальция.
Перенос кальция из области меньшей (1-4 х 10-3 М) в область больших концентраций (1-10 х 10-3 М) - это и есть та работа, которую совершает Са - транспортная АТФаза в мышечных клетках.
Для повторения цикла требуется возвращение кальций-связывающих центров изнутри наружу, то есть еще одно конформационное изменение а молекуле фермента.
Молекулярный механизм работы этих двух "насосов" во многом близок. Основные этапы работы Na+ K+ АТФаз таковы:
1. Присоединение снаружи двух ионов K+ и одной молекулы Mg2+ АТФ:
2 Ko+ + Mg АTФ + E ® (2 K+)(Mg АТФ)E
2. Гидролиз АТФ и образование энзим-фосфата:
(2 K+ )(Mg АТФ)E ® Mg АТФ + (2 K+)E - P
3. Перенос центров связывания K+ внутрь (транслокация 1):
(2 K+ )E - P ® E - P(2 K+ )
4. Отсоединение обоих ионов калия и замена этих ионов тремя ионами Na, находящимися внутри клетки:
E - P(2 K+) + 3 Nai + ®E - P(3 Na+ ) + 2 K+ i
5. Гидролиз E - P:
E - P(3 Na+ ) ®E(3 Na+ ) + P (фосфат)
6. Перенос центров связывания вместе с ионами Na+ наружу (транслокация 2):
мембранный структура молекулярный диффузия
E(3 Na+ ) ® (3 Na+ )E
7. Отщепление 3 Na+ и присоединение 2 K+ снаружи:
2 K0+ + 3 Na+ (E) ® 3 Na+ + (2 K+ )E
Перенос 2 K+ внутрь клетки и выброс 3 Na+ наружу приводит в итоге к переносу одного положительного иона из цитоплазмы в окружающую среду, а это способствует появлению мембранного потенциала (со знаком "минус" внутри клетки).
Таким образом, Na+ K+ насос является электрогенным.
1.6 Проницаемость
Проницаемость - это способность клеток и тканей поглощать, выделять и транспортировать химические вещества, пропуская их через мембраны клеток, стенки сосудов и клетки эпителия. Живые клетки и ткани находятся в состоянии непрерывного обмена химическими веществами с окружающей средой, получая из нее продукты питания и выводя в нее продукты метаболизма. Основным диффузионным барьером на пути движения веществ является клеточная мембрана. В 1899 году Овертон обнаружил, что дегкость прохождения веществ через клеточную мембрану зависела от способности этих веществ растворяться в жирах. В то же время ряд полярных веществ проникал в клетки независимо от растворимости в жирах, что можно было объяснить существованием в мембранах водных пор.
В настоящее время различают пассивную проницаемость, активный транспорт веществ и особые случаи проницаемости, связанные с фагоцитозом и пиноцитозом.
Основные виды диффузии - это диффузия веществ путем растворения в липидах мембраны, диффузия веществ через полярные поры, диффузия ионов через незаряженные поры. Особыми видами диффузии являются облегченная и обменная. Она обеспечивается особыми жирорастворимыми веществами-переносчиками, которые способны связать переносимое вещество по одну сторону мембраны, диффундировать с ним через мембрану и освобождать по другую сторону мембраны. Роль специфических переносчиков иона выполняют некоторые антибиотики, получившие название ионофорных (валиномин, нигерицин, моненсин, поеновые антибиотики нистатин, аифотерицин В и ряд других). Ионофоры могут быть разделены в свою очередь на три класса в зависимости от заряда переносчика и структуры кольца: нейтральный переносчик с замкнутым ковалентной связью кольцом (валиномицин, нактины, полиэфиры), заряженный переносчик с кольцом, замкнутым водородной связью (нигерицин, монензин). Заряженные переносчики с трудом проникают в заряженной форме через модельные и биологические мембраны, в то же время в нейтральной форме они свободно диффундируют в мембране. Нейтральная форма образуется путем формирования комплекса анионной формы переносчика с катионом. Таким образом, заряженные переносчики способны обменивать катионы, находящиеся преимущественно по одну сторону мембраны на катионы расвора, омывающего противоположную сторону мембраны.
Наиболее распространенным видом пассивной диффузии клеточных мембран является порная.
В пользу реально существующего порного механизма проницаемости свидетельствуют данные об осмотических свойствах клеток.
Классическое уравнение осмотического давления:
p = s cRT,