Курсовая работа: Градиентный метод первого порядка
В таких случаях используется принцип оптимальности, который формулируется в следующем виде: оптимальная стратегия обладает таким свойством, что, каково бы ни было начальное состояние и начальное решение, последующие решения должны приниматься, исходя из оптимальной стратегии относительно состояния, получаемого в результате первого решения.
Основная идея динамического программирования и заключается в том, что если какой-либо поток изменяется на каждой стадии процесса, то, если на последней стадии режим работы (независимо от режима работы на всех стадиях) не будет оптимальным по отношению к поступающему на нее потоку, не будет оптимальным и режим всего многостадийного процесса в целом.
Применение метода динамического программирования состоит в определении такого режима работы стадии, который максимизирует доход на этой и всех последующих стадиях для любых возможных состояний поступающего на нее потока. Обычно рассмотрение начинается с последней стадии процесса. Оптимальный режим всего процесса определяется постадийно.
Таким образом, метод динамического программирования предполагает разбиение анализируемого процесса во времени или пространстве на стадии или ступени. В качестве стадии можно принять единицу времени (минута или час), единичный элемент оборудования (тарелка в ректификационной колонне или реактор в цепочке реакторов).
В любом случае стадия или ступень – это математическая абстракция, применяемая для представления непрерывной переменной в дискретном виде. Состояние системы характеризуется совокупностью переменных, описывающих систему на любой стадии процесса.
Каждая стадия характеризуется входными xi -1 и выходными xi параметрами, а также параметрами управления ui . При помощи управляющих воздействий оптимизируется результирующая оценка эффективности многостадийного процесса, определяемая как аддитивная функция результатов, получаемых на каждой стадии ui(x1 i -1 , ui ):
(1)
Значение критерия оптимальности RN зависит от совокупности uN управляющих воздействий на всех стадиях. Совокупность управлений называется стратегией управления многостадийным процессом.
Основным уравнением динамического программирования является функциональное уравнение вида:
, (2)
где - оптимизируемая функция N-стадийного процесса, максимальное значение критерия RN .
Максимизация первого слагаемого r1 (x0 ,u1 ), представляющего собой частный критерий, характеризующий первую стадию, проводится только по управлению u1 .
Член есть значение оптимизируемой функции на последующих N-1 стадиях и максимизируется выбором управлений на всех стадиях, ui (I = 1,…,N), поскольку значение x1 зависит от управления u1 .
Выражение (2) представляет собой рекуррентное соотношение, характеризующее последовательность функций последняя из которых отвечает искомому решению оптимальной задачи. Стратегия решения выражается системой выбранных значений ui – членов уравнения (2), где i = 1, 2, ..., N; система дает решение функционального уравнения. Оптимальная стратегия выражается системой функций ui , которые максимизируют правую часть уравнения (2), а именно: для i = 1, 2, ..., N.
Часто важно знать сам характер оптимальной стратегии, нежели значение оптимизируемой функции. В ходе определения функции fN (x) получают одновременно последовательность решений ui или стратегию также в виде функции номера стадии i.
Решение рекуррентных уравнений обычно выполняется численными методами. Часто используется следующая последовательность расчета с применением вычислительной машины: сначала находят f1 (x), затем по найденному значению функции f1 (x) по уравнению ( 1 ) определяют функцию f2 (x); далее последовательно определяют f3 (x) из f2 (x) и т.д.
При решении задач оптимизации и моделировании динамической системы методом динамического программирования необходимо обратить внимание на следующие основные положения:
А) оптимизируемый процесс должен быть дискретно-распределенным во времени или пространстве (многостадийный процесс);
Б) отдельные стадии процесса должны обладать относительной независимостью, т.е. вектор выходных параметров любой стадии должен зависеть только от вектора входных параметров на эту стадию и управления на ней;
В) критерий оптимальности всего процесса должен быть сформулирован как аддитивная функция критериев оптимальности каждой стадии.
Если выполняются эти условия, необходимо правильно сформулировать задачу оптимизации. При формулировке задачи оптимизации и моделирования должны быть выявлены: 1) параметры, характеризующие состояние каждой стадии; 2) управляющие параметры на каждой стадии; 3) ограничения, которые накладываются на параметры состояния процесса и управляющие параметры. Кроме того, должно быть составлено математическое описание для каждой стадии и определен критерий оптимальности.
Градиентные методы оптимизации
Градиентные методы оптимизации относятся к численным методам поискового типа. Они универсальны, хорошо приспособлены для работы с современными цифровыми вычислительными машинами и в большинстве случаев весьма эффективны при поиске экстремального значения нелинейных функций с ограничениями и без них, а также тогда, когда аналитический вид функции вообще неизвестен. Вследствие этого градиентные, или поисковые, методы широко применяются на практике.
Сущность указанных методов заключается в определении значений независимых переменных, дающих наибольшие изменения целевой функции. Обычно для этого двигаются вдоль градиента, ортогонального к контурной поверхности в данной точке.
Различные поисковые методы в основном отличаются один от другого способом определения направления движения к оптимуму, размером шага и продолжительностью поиска вдоль найденного направления, критериями окончания поиска, простотой алгоритмизации и применимостью для различных ЭВМ. Техника поиска экстремума основана на расчетах, которые позволяют определить направление наиболее быстрого изменения оптимизируемого критерия.
Если критерий задан уравнением
, (3)
то его градиент в точке (x1 , x2 ,…, xn ) определяется вектором:
. (4)
Частная производная пропорциональна косинусу угла, образуемого вектором градиента с i-й осью координат. При этом