Курсовая работа: Имитационное моделирование системы массового обслуживания

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

. (1.2.1)

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:



Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

К-во Просмотров: 457
Бесплатно скачать Курсовая работа: Имитационное моделирование системы массового обслуживания