Курсовая работа: Інтегрування Нютона-Котеса

Задача чисельного інтегрування функції полягає в обчисленні значення визначеного інтегралу на основі ряду значень підінтегральної функції. Графічно інтеграл визначається площею‚ яка обмежена графіком функції .

Найчастіше на використовуються на практиці і є найбільш відомими наступні методи знаходження визначених інтегралів:

- методи Ньютона-Котеса‚ Гауса‚ Чебишева‚ що базуються на так званих квадратурних формулах‚ які одержуються шляхом заміни функції інтерполяційними многочленами;

- методи Монте-Карло‚ що базуються на використанні статистичних моделей.

1.2 Методи розв'язування задачі

Формули Ньютона-Котеса. Для виведення формул Ньютона-Котеса інтеграл (1) представляють у вигляді

‚ (2)

де - вузли інтерполяції‚ - коефіцієнти‚ залежні від виду формули‚ - погрішність квадратурної формули.

Здійснивши в (2) заміну підінтегральної функції відповідним інтерполяційним многочленом Лагранжа для рівновіддалених вузлів з кроком ‚ можна отримати наступну формулу для розрахунку коефіцієнтів при довільній кількості вузлів

(3)

де - приведена змінна.

Зазвичай‚ коефіцієнти називають коефіцієнтами Котеса. При цьому формула (3) набуває такого вигляду

. (4)


В таблиці 1 наводяться значення коефіцієнтів Котеса та оцінки погрішностей для значень від 1 до 8. Оскільки коефіцієнти Котеса при великій кількості ординат є доволі складними‚ то на практиці для наближеного обчислення визначених інтегралів розбивають проміжок інтегрування на велику кількість дрібних проміжків і до кожного з них застосовують квадратурну формулу Ньютона-Котеса з малим числом ординат. Таким чином‚ отримуються формули більш простої структури‚ точність яких може бути довільно високою.

Таблиця 1. Коефіцієнти Котеса.

1

1

1

К-во Просмотров: 871
Бесплатно скачать Курсовая работа: Інтегрування Нютона-Котеса