Курсовая работа: Інтегрування Нютона-Котеса
При обчисленні визначених інтегралів слід враховувати похибку знаходження значень . Якщо ‚ наприклад‚ будуть задані з однаковою похибкою ‚ то сумарна похибка становитиме
.
Якщо використання формул оцінки похибки пов'язано з труднощами‚ обумовленими необхідністю знаходження похідних вищих порядків (четвертого‚ а навіть і п'ятого)‚ то можна використовувати практичний метод екстраполяції Річардсона [1].
Точність квадратурних формул з фіксованим розташуванням рівновіддалених вузлів обмежена можливостями використовуваних методів інтерполяції.
Формула Чебишева. Формула (2) може бути зведена до вигляду
(8)
шляхом заміни змінної
.
При виводі формули Чебишева використовуються наступні умови: коефіцієнти рівні між собою; квадратурна формула (8) є точною для всіх поліномів до степені включно. Враховуючи‚ що і при , отримаємо . Тоді формула (8) матиме вигляд
.(9)
Для знаходження необхідно розв'язати систему нелінійних рівнянь
(10)
Система рівнянь (10) має розв'язок при . Значення абсцис в формулі Чебишева наведено в таблиці 2. Обмежена точність і є принциповим недоліком формули Чебишева.
Таблиця 2. Значення абсцис в формулі Чебишева
|
|
|
|
|
|
2 |
1; 2 |
0,577330 |
6 |
1;6 2;5 3;4 |
0,866247 0,422519 К-во Просмотров: 866
Бесплатно скачать Курсовая работа: Інтегрування Нютона-Котеса
|