Курсовая работа: Использование модели экономического цикла Самуэльсона-Хикса
- a 1 - a 2 , (9)
Обозначим его корни 1 , 2 и запишем
В теории конечно-разностных уравнений[4] доказывается, что при 1 2 решение уравнения (8) описывается равенством
, (10)
где A 1 и A 2 - постоянные, определяемые начальными условиями.
Если же 1 = 2 = , то решение имеет вид
, (11)
Решение уравнения (8) зависит от значения дискриминанта характеристического уравнения (9).
Рассмотрим возникающие при этом случаи.1. D > 0. Характеристическое уравнение имеет два различных вещественных корня. Решение описывается равенством (10); если оба корня положительны, то обе компоненты решения - монотонные геометрические прогрессии. Если имеются отрицательные корни, то каждому из них отвечает знакочередующаяся составляющая решения (10).2. D = 0. Характеристическое уравнение имеет совпадающие вещественные корни, и решение имеет вид (11).
3. D < 0. Характеристическое уравнение имеет пару сопряженных комплексных корней: 1,2 = i .
Равенство (10) при этом справедливо, но неудобно для использования, так как вещественный процесс при этом описывается как сумма комплексных составляющих. Более удобную форму решения можно получить, используя тригонометрическое представление корней: 1,2 = g (cos sin), где Такое представление позволяет описать решение уравнения (8) равенством
, (12)
где B 1 и B 2 - постоянные, определяемые начальными условиями.
Таким образом, при D < 0 решение носит характер колебаний, амплитуда которых возрастает (при g > 1) или убывает (при g < 1);
Решение уравнения (8) называют равновесным, если значение xt не изменяется во времени. Подстановкой в уравнение (8) можно убедиться, что xt = 0 есть равновесное решение. Равновесное решение называется устойчивым, если xt 0 при t ; в противном случае оно называется неустойчивым. Равенства (10) и (11) показывают, что решение будет устойчивым в том и только в том случае, если оба корня характеристического уравнения по модулю меньше единицы. В случае D < 0 условию устойчивости соответствует g < 1, так как при этом необходимым и достаточным условием устойчивости является a 2 > -1. По теореме Виета 1 2 = -a 2 , так что условие a 2 > -1 необходимо и в случае D > 0, но здесь оно не является достаточным. Система неравенств
дает необходимое и достаточное условие устойчивости для данного случая. Для этого требуется, чтобы выполнялось неравенство
Систему можно заменить одним неравенством
Объединяя все полученные результаты, условие устойчивости можно представить в виде двойного неравенства
,(13)
Уравнение модели экономических циклов Самуэльсона-Хикса имеет вид уравнения (8), при этом
Заметим, что Cy 0 и 0 в силу экономического содержания этих параметров. Согласно теореме Виета,
,(14)
Условие D = 0, разделяющее колебательные и неколебательные решения, теперь имеет вид
При характеристическое уравнение имеет вещественные корни. Из неотрицательности параметров Cy и и равенств (14) следует, что оба корня неотрицательны и обе компоненты решения (10) изменяются монотонно. При решение носит колебательный характер.
Условие устойчивости (13) теперь принимает вид