Курсовая работа: Использование сетей Петри в математическом моделировании
{
Spisok A;
Lref p,q; // Рабочие указатели.
Tref t;
int x,y; // Рабочие переменные.
// Фаза ввода.
cout << "Задайте отношение частичного порядка... \n";
cout << "Элемент ";
cin >> x;
cout << " предшествует элементу ";
while (x! =0)
{
cin >> y;
p = A. L (x); q = A. L (y);
t = new (Trailer); t->Id = q; t->Next = p->Trail;
p->Trail = t; q->Count += 1;
cout << "Элемент ";
cin >> x;
cout << " предшествует элементу ";
}
// Поиск ведущих с нулевым количеством предшественников.
A. Poisk ();
// Фаза вывода.
A. Vyvod ();
} [11]
§3. Математические модели с использованием сетей Петри
Сети Петри являются эффективным инструментом дискретных процессов, в частности, функционирования станочных систем. Их особенность заключается в возможности отображения параллелизма, асинхронности и иерархичности.
На рис.2 приводится пример сети Петри, где Р - конечное непустое множество позиций (состояний); Т - конечное непустое множество переходов (событий), причем p P и ti T; F: Р x Т - {0, 1, 2,... }; Н: Т x Р {0, 1, 2,... } - функции входных и выходных инциденций; μ0 : Р {0, 1, 2,... } - начальная маркировка. Вершины сети p P изображены кружками, а вершины ti T - черточками (баркерами). Дуги соответствуют функциям инцидентности позиций и переходов. Точки в кружочках означают заданную начальную маркировку. Число маркеров в позиции равно значению функции μ: Р {0, 1, 2,... }. Переход от одной маркировки к другой осуществляется срабатыванием переходов. Переход t может сработать при маркировке μ, если он является возбужденным:
(1)