Курсовая работа: Использование современных симметрических DES и асимметрических RSA алгоритмов шифрования

Для вычисления значения функции f используются следующие функции-матрицы:

· Е - расширение 32-битовой последовательности до 48-битовой,

· S1, S2, ... , S8 - преобразование 6-битового блока в 4-битовый,

· Р - перестановка бит в 32-битовой последовательности.

Функция расширения Е определяется табл.3. В соответствии с этой таблицей первые 3 бита Е(R(i-1)) - это биты 32, 1 и 2, а последние - 31, 32 и 1.

Таблица 3:Функция расширения E

32 01 02 03 04 0504 05 06 07 08 0908 09 10 11 12 1312 13 14 15 16 1716 17 18 19 20 2120 21 22 23 24 2524 25 26 27 28 2928 29 30 31 32 01

Результат функции Е(R(i-1)) есть 48-битовая последовательность, которая складывается по модулю 2 (операция xor) с 48-битовым ключом К(i). Получается 48-битовая последовательность, которая разбивается на восемь 6-битовых блоков B(1)B(2)B(3)B(4)B(5)B(6)B(7)B(8). То есть:

E(R(i-1)) xor K(i) = B(1)B(2)...B(8) .

Функции S1, S2, ... , S8 определяются табл.4.


Таблица 4

Функции преобразования S1, S2, ..., S8

Номер столбца 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Н о м е р с т р о к и 0 1 2 3 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 S1
0 1 2 3 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 S2
0 1 2 3 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 S3
0 1 2 3 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 S4
0 1 2 3 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 S5
0 1 2 3 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 S6
0 1 2 3 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 S7
0 1 2 3 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 S8

К табл.4. требуются дополнительные пояснения. Пусть на вход функции-матрицы Sj поступает 6-битовый блок B(j) = b1b2b3b4b5b6, тогда двухбитовое число b1b6 указывает номер строки матрицы, а b2b3b4b5 - номер столбца. Результатом Sj(B(j)) будет 4-битовый элемент, расположенный на пересечении указанных строки и столбца.

Например, В(1)=011011. Тогда S1(В(1)) расположен на пересечении строки 1 и столбца 13. В столбце 13 строки 1 задано значение 5. Значит, S1(011011)=0101.

Применив операцию выбора к каждому из 6-битовых блоков B(1), B(2), ..., B(8), получаем 32-битовую последовательность S1(B(1))S2(B(2))S3(B(3))...S8(B(8)).

Наконец, для получения результата функции шифрования надо переставить биты этой последовательности. Для этого применяется функция перестановки P (табл.5). Во входной последовательности биты перестанавливаются так, чтобы бит 16 стал битом 1, а бит 7 - битом 2 и т.д.

Таблица 5:Функция перестановки P

16 07 20 2129 12 28 1701 15 23 2605 18 31 1002 08 24 1432 27 03 0919 13 30 0622 11 04 25

Таким образом,

f(R(i-1), K(i)) = P(S1(B(1)),...S8(B(8)))

Чтобы завершить описание алгоритма шифрования данных, осталось привести алгоритм получения 48-битовых ключей К(i), i=1...16. На каждой итерации используется новое значение ключа K(i), которое вычисляется из начального ключа K. K представляет собой 64-битовый блок с восемью битами контроля по четности, расположенными в позициях 8,16,24,32,40,48,56,64.

Для удаления контрольных битов и перестановки остальных используется функция G первоначальной подготовки ключа (табл.6).

Таблица 6

Матрица G первоначальной подготовки ключа

57 49 41 33 25 17 0901 58 50 42 34 26 1810 02 59 51 43 35 2719 11 03 60 52 44 3663 55 47 39 31 23 1507 62 54 46 38 30 2214 06 61 53 45 37 2921 13 05 28 20 12 04

Результат преобразования G(K) разбивается на два 28-битовых блока C(0) и D(0), причем C(0) будет состоять из битов 57, 49, ..., 44, 36 ключа K, а D(0) будет состоять из битов 63, 55, ..., 12, 4 ключа K. После определения C(0) и D(0) рекурсивно определяются C(i) и D(i), i=1...16. Для этого применяют циклический сдвиг влево на один или два бита в зависимости от номера итерации, как показано в табл.7.


Таблица 7

Таблица сдвигов для вычисления ключа

Номер итерации Сдвиг (бит)

Полученное значение вновь "перемешивается" в соответствии с матрицей H (табл.8).

Таблица 8:

Матрица H завершающей обработки ключа

14 17 11 24 01 0503 28 15 06 21 1023 19 12 04 26 0816 07 27 20 13 0241 52 31 37 47 5530 40 51 45 33 4844 49 39 56 34 5346 42 50 36 29 32

Ключ K(i) будет состоять из битов 14, 17, ..., 29, 32 последовательности C(i)D(i). Таким образом:

К-во Просмотров: 822
Бесплатно скачать Курсовая работа: Использование современных симметрических DES и асимметрических RSA алгоритмов шифрования