Курсовая работа: Исследование метода дифференцирования по параметру для решения нелинейных САУ

1.0000 1.9291 0.5190 0.0027 -0.0014

2.0000 1.9319 0.5176 0.0000 0.0000

3.0000 1.9319 0.5176 0.0000 0.0000

Проверим теперь влияние задаваемого шага интегрирования на точность получаемого решения: зададим h = 0.5 вместо 0.1. Тогда получим:

Метод Рунге - Кутта 1го порядка

t =

0

h =

0.5000

y =

2 0

t =

1

h =

0.5000

y =

1.9683 0.5040

Количество шагов =

2

Количество итераций равно

4

out =

0 1.9683 0.5040 0.0100 0.0100

1.0000 1.9683 0.5040 -0.0359 0.0133

2.0000 1.9323 0.5173 -0.0005 0.0004

3.0000 1.9319 0.5176 0.0000 0.0000

4.0000 1.9319 0.5176 0.0000 0.0000

Метод Рунге - Кутта 2го порядка

К-во Просмотров: 555
Бесплатно скачать Курсовая работа: Исследование метода дифференцирования по параметру для решения нелинейных САУ