Курсовая работа: Исследование метода продолжения решения по параметру для нелинейных САУ
Министерство образования РФ
Новосибирский Государственный Технический Университет
Кафедра экономической информатики
Курсовая работа
по дисциплине "Численные методы"
Тема: Исследование метода продолжения решения по параметру для нелинейных САУ
Группа:
Выполнил:
Проверила: Сарычева О.М.
Новосибирск 2011 г.
Содержание
Введение
1. Постановка задачи (математическое описание метода)
2. Описание программного обеспечения
2.1 Общие сведения и требования к ПО и описание логической структуры
3. Описание тестовых задач
4. Анализ результатов
Заключение
Используемая литература
Введение
В данной курсовой работе будет рассмотрен метод продолжения решения по параметру, с помощью которого можно эффективно находить корни нелинейных САУ. В работе исследуется влияние вектора начальных приближений x 0 и заданной точности решения εgon на число итераций, время счета и сходимость метода. Так же дается описание программного обеспечения и тексты программ, использованные в данной работе для построения графиков сходимости метода для различных начальных значений вектора x0 , графики ошибки.
1. Постановка задачи (математическое описание метода)
Метод продолжения решения по параметру является наиболее универсальным при решении нелинейных САУ. Пусть t - параметр, меняющийся от 0 до1. Введем в рассмотрение некоторую САУ
H (x, t) =0,
такую, что:
1) При t=0 система H (x, 0) =0 имеет решение x0 ;
2) При t=1 система H (x, 1) =0 имеет решение x* ;
3) Вектор-функция H (x, t) непрерывна по t. Тогда меняя t от 0 до 1 и решая для каждого ti систему H (x, ti) =0, например, методом Ньютона, можно найти последовательно x0 , x1 , x2 , …, x* .
Так как x0 при t=0 известно, то всегда можно найти t1 , достаточно близкое к t0 , при котором будут выполняться условия сходимости, например, метода Ньютона. Аналогично можно обеспечить условия сходимости метода Ньютона и для t2 , t3 ,…, t=1.
Вектор-функция H ( x, t) может быть выбрана различными способами. Рассмотрим три распространенных варианта:
1) H (x, t) =F (x) + (t-1) *F (x0 ) =0
При t=0 получаем: F (x0 ) - F (x0 ) =0, т.е. условие 1) выполнено.
При t=1 F (x* ) - (1-1) * F (x0 ) =F (x* ) =0. И, наконец, вектор-функция H (x, t) непрерывна по t.
2) H (x, t) =t*F (x).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--