Курсовая работа: Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений

где - некоторое начальное приближение.

Для приведения системы (2) к виду (3) используем следующий прием. Положим

(). (4)

Коэффициенты найдем как приближенные решения следующей системы уравнений:

Характеристики метода:

1. Сходимость.

Локальная, то есть метод сходится при выборе начальных приближений достаточно близко к точному решению. Насколько близко необходимо выбирать начальное приближение, исследуем в практической части.

2. Выбор начального приближения

Начальные значения переменных должны выбираться близко к точным.

3. Скорость сходимости линейная.

4. Критерий окончания итераций.

Определяется по формуле:

,

1.2 Метод Ньютона

Пусть дана система (2). Согласно методу Ньютона последовательные приближения вычисляются по формулам

Где

, ,

а якобиан

Характеристики метода:

1. Сходимость.

Локальная, то есть метод сходится при выборе начальных приближений достаточно близко к точному решению. Насколько близко необходимо выбирать начальное приближение, исследуем в практической части.

2. Выбор начального приближения

Начальные значения переменных должны выбираться близко к точным.

3. Скорость сходимости квадратичная.

4. Критерий окончания итераций.

Аналогично методу простой итерации:

,


2 Описание программного обеспечения

метод итерация ньютон нелинейное уравнение

Программное обеспечение представлено в виде двух основных модулей – mpi2.m (метод простой итерации) и kmn2.m (классический метод Ньютона) и трех вспомогательных модулей – funF.m (матрица системы), funJ.m (матрица Якоби для системы), head.m (головная программа).

Головная программа – модуль head.m

К-во Просмотров: 245
Бесплатно скачать Курсовая работа: Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений