Курсовая работа: Исследование прочности на разрыв полосок ситца

Проверка гипотезы о предполагаемом законе распределения производится с помощью специально подобранной величины называемой критерием согласия.

Для исследования воспользуемся критерием χ 2 Пирсона.

Вычисляем χ 2 для наблюдаемых значений. Для вычислений составляем таблицу и воспользуемся следующими формулами:

_

хв =31,98

_

Dв =2,24

_

σв =1,5

Таблица отдельный файл

k (ni-ni*)2

χ2 набл .=Σ

i=1 ni

χ2 набл =13,8725515

Далее находим χ2 с помощью таблицы критических точек распределения по заданному уровню значимости £=0,05 и числу степеней свободы.

К=S-3

5-3=2

χ2 крит. =6,0

χ2 набл =13,8725515 > χ2 крит =6,0

Гипотеза не принимается.

Вывод

В данной работе был изучен статистический материал по исследованию прочности на разрыв полосок ситца, статистически были обработаны и получены соответствующие результаты.

Цель курсовой работы реализована через решение поставленных задач.

Наглядно представление о поведении случайной величины показано через полигон частот и полигон относительных частот, гистограммы частот и гистограммы относительных частот.

Была составлена и построена эмпирическая функция распределения и построен график этой функции на основе наблюдаемых значений.

0ценили параметры распределения:

выборочную среднюю

выборочную дисперсию

выборочное среднее квадратичное отклонение.

После обработки имеющихся статистических данных было выдвинуто предположение о нормальном распределении случайной величины. При проверке этой гипотезы оказалось, что случайная величина нераспределена по нормальному закону.

Литература

1. Гнеденко Б.В. Курс теории вероятностей: Учебник. - М.: Наука, 1988.

2. Боровков А.А. Теория вероятностей: Учеб. пособие.; М.: Наука, 1986.

К-во Просмотров: 356
Бесплатно скачать Курсовая работа: Исследование прочности на разрыв полосок ситца