Курсовая работа: Исследование распределения температуры в тонком цилиндрическом стержне

В качестве возьмём:

где М = max [f’(x)] на [a;b], а m = min [f’(x)] на [a’b]

В силу монотонности f’(x) на [a;b] имеем m = f’(а), М = f’(b). Тогда 0,045.


??????????? ? ????? ???? ?? ????????? ?????:

?????????? ????? ?? ??? ???, ???? ?? ?????????? ???????:

(q = max |’(x)| на [a’b])

’(x) на [a’b] монотонно убывает, поэтому максимум его модуля достигается на одном из концов.

’(0,05) = 0,3322 ’(0,1) = -0,3322, следовательно, q = 0.3322 < 1. В этом случае выполняется условие сходимости и получается последовательность:

i xi ( xi )  xi
0 0.075 0.082392 0.00739
1 0.082392 0.082025 0.000367
2 0.082025 0.08206 3.54 10-5
3 0.08206 0.082057 3.33 10-6
4 0.082057 0.082057 3.15 10-7

Итак, с погрешностью, меньшей 10-4 , имеем:

Т0 = 72,7176 с. , 0.03142

5. Решение краевой задачи


?????????? ????? ?????? ?????????. ??????? ?????? ??????? ? ????:

(5.1)


????? ????? ?????????? y = (U -   , ??????? (5.1) ? ????:

(5.2)


  0.18L/2 =0.0193. ? ???????? ?????? ????????? ??????? .

?????, ????????? y(x) ? ????????? (5.2) ? ??????????????? ????? ??? ?????????? ???????? , ???????:

(5.3)


??????????? ????? ??????? ??????? ????:

?? (5.2) ? (5.3) ??????? ????? ??????? ????????? ??? y0 :

где y0 с тильдой – частное решение данного неоднородного уравнения; y(1) и y(2) – линейно независимые решения однородного уравнения.


????? ?????????:

y0общ = 1 + c1 ch(px)+c2 sh(px), где p = 0.01953


????????? ?????? ?? ????????? ???????:

откуда с1 = 0, с2 = -0,57; т.е. имеем функцию:

y0 = 1 - 0.57 sh(px)


????? ???????:

??????? ???????:

Дифференцируя и подставляя в уравнение, получим:

А1 = 0; А2 = -0,1083; В1 = 0; В2 = 17,1569;

Тогда общее решение для y1 имеет вид:


?3 = 0; ?4 = 0,0462

Перейдя к старой переменной U, получим:


   

???????? ?????????:

Пользуясь этой формулой, составим таблицу значений функции U(x):

x U(x) U
0 352.9075 353
0.0019 350.4901
0.0039 343.1972 343
0.0058 330.9053
0.0077 313.4042 313
0.0097 290.391
0.0116 261.4598 261
0.0135 226.0893
0.0154 1836255 184
0.0174 133.2579
0.0193 74 74

Используя данную таблицу, строим график функции U(x).

[см. приложение 1]

6. Заключение

Решение задачи на ЭВМ при помощи вычислительной системы ManhCad 7.0 дало результаты (функцию распределения температуры в тонком цилиндрическом стержне), полученные по решению практического задания и обработкой эксперимента (функции регрессии), которые практически (в пределах погрешности) совпадают с экспериментальными значениями.

Список литературы

1. Методические указания «Методы приближённых вычислений. Решение нелинейных уравнений» (ЛТИ им. Ленсовета, Л. 1983)

2.Методические указания «Приближённые методы ислисления определённых интегралов» (ЛТИ им. Ленсовета, Л. 1986)

Методические указания «Изучение распределения температуры в тонком цилиндрическом стержне» (ЛТИ им. Ленсовета, Л. 1988)

К-во Просмотров: 632
Бесплатно скачать Курсовая работа: Исследование распределения температуры в тонком цилиндрическом стержне