Курсовая работа: Канонический вид произвольных линейных преобразований

у = (А - l 0 Е)х

есть присоединенный вектор порядка k -1.

Пример. Пусть R – пространство многочленов степени £n-1 и преобразование А – дифференцирование:

АР(t) = P(t).

Легко видеть, что l = 0 есть собственное значение. Соответствующий ему собственный вектор P(t) = const. Найдем для этого преобразования подпространства . По определению состоит из всех многочленов P(t), для которых Аk Р(t) = 0, т. е.

Это будут все многочлены, степень которых не превышает k-1. Присоединенными векторами k-го порядка будут многочлены, степень которых в точности равна k-1.

2.2 Выделение подпространства, в котором преобразование А имеет только одно собственное значение

Пусть l1 – некоторое собственное значение преобразования А. Пространство R можно разложить в прямую сумму двух инвариантных подпространств, в первом из которых преобразование А имеет лишь одно собственное значение l1 , а во втором у преобразования А уже нет собственного значения l1 .

Не ограничивая общности, можно считать, что l1 = 0.

Действительно, пусть l1 ¹ 0. Рассмотрим преобразование В = А - l1 Е; оно уже имеет собственное значение, равное нулю. Очевидно также, что инвариантные подпространства преобразований А и В совпадают.

Итак, будем считать, что преобразование А имеет собственное значение l= 0. Докажем это утверждение сначала для частного случая, когда в пространстве нет присоединенных векторов, отвечающих этому собственному значению, а есть только собственные векторы.

Нам нужно построить два инвариантных подпространства, прямая сумма которых равна R. В качестве первого из них, в котором l= 0 есть единственное собственное значение, можно взять совокупность N0 всех собственных векторов, отвечающих собственному значению l= 0 или, другими словами, ядро преобразования А.

В качестве второго подпространства возьмем образ М пространства R при преобразовании А, т. е. совокупность векторов у = Ах, где х пробегает все пространство R. Легко видеть, что каждое из этих подпространств инвариантно.

Они дают разложение пространства в прямую сумму. Так как сумма размерностей ядра и образа для любого преобразования А равна n, то достаточно доказать, что пересечение этих подпространств равно нулю.

Предположим, что это не так, т. е. пусть существует вектор у ¹ 0 такой, что уÎМ и уÎN0 . Так как уÎМ, то он имеет вид

у = Ах, (4)

где х – некоторый вектор из R. Так как уÎN0 , то

Ау = 0, где у ¹ 0. (5)

Равенство (5) означает, что у есть собственный вектор преобразования А, отвечающий собственному значению l= 0, а равенство (4) при этом означает, что х есть присоединенный вектор первого порядка, отвечающий тому же собственному значению. Мы же предположили, что у преобразования А нет присоединенных векторов, отвечающих собственному значению l= 0.

Таким образом доказано, что подпространства М и N0 не имеют общих векторов кроме нулевого.

Вспоминая, что сумма размерностей образа и ядра равна n, мы получаем отсюда, что пространство R разложимо в прямую сумму инвариантных подпространств М и N0 :

R = M + N 0 .

Замечание. Из приведенного выше доказательства видно, что образ и ядро имеют пересечение, отличное от нуля в том и только случае, когда преобразование А имеет присоединенные векторы, отвечающие собственному значению l= 0.

Разобранный частный случай дает нам идею того, как проводить доказательство в общем случае, когда А имеет также и присоединенные векторы, отвечающие собственному значению l= 0. Подпространство N0 при этом оказывается слишком узким, и его естественно расширить за счет добавления всех присоединенных векторов, отвечающие собственному значению l= 0. Второе же подпространство М оказывается при этом слишком большим.

Теорема. Пространство R можно разложить в прямую сумму инвариантных подпространств и . При этом подпространство состоит только из собственных и присоединенных векторов, отвечающих собственному значению l = 0, а в подпространстве преобразование А обратимо ( т. е. l= 0 не является собственным значением преобразования А в подпространстве ).

Если l1 – некоторое собственное значение преобразования А, то пространство R можно разложить в прямую сумму инвариантных подпространств R1 и , в первом из которых преобразование А имеет только собственное значение l1 , а во втором все собственные значения А отличны от l1 .

Применяя полученный результат к преобразованию А в пространстве и к некоторому собственному значению l2 этого преобразования, мы «отщепим» инвариантное подпространство, отвечающее собственному значению l2 . Продолжая этот процесс, пока не будут исчерпаны все собственные значения преобразования А, мы получим доказательство следующей теоремы:

Теорема. Пусть преобразование А пространства R имеет k различных собственных значений l 1 , … , l k .. Тогда R можно разложить в прямую сумму k инвариантных подпространств , …, :

R = + … + . (6)

К-во Просмотров: 286
Бесплатно скачать Курсовая работа: Канонический вид произвольных линейных преобразований