Курсовая работа: Канонический вид произвольных линейных преобразований
Осталось еще только одна не менее важная задача – выбрать в каждом из этих подпространств базис, в котором матрица преобразования имеет жорданову нормальную форму.
2.3 Приведение к нормальной форме матрицы с одним собственным значением
В случае, если пространство состоит только из собственных векторов, базис в пространстве можно выбирать произвольно и матрица преобразования в этом базисе имеет диагональный вид.
В общем случае неосторожный выбор базиса может запутать картину.
Чтобы выбрать базис, в котором матрица преобразования имеет наиболее простой вид, мы будем тянуть цепочки собственных и присоединенных векторов, выбрав некоторый базис в подпространстве и последовательно применяя к векторам этого базиса преобразование А.
Определение. Векторы из пространства R называются относительно линейно независимыми над подпространством R 1 , если никакая их линейная комбинация, отличная от нуля, не принадлежит R 1 .
Заметим, что всякие линейно зависимые векторы из R относительно линейно зависимы над любым пространством.
Определение. Базисом пространства R относительно подпространства R 1 называется такая система е1 , … , е k линейно независимых векторов из R , которая после пополнения каким-нибудь базисом из R 1 образует базис во всем пространстве.
Такой базис легко построить. Для этого достаточно будет выбрать какой-нибудь базис в R1 , дополнить его до базиса во всем пространстве и затем отбросить вектор исходного базиса из R1 . Число векторов в таком относительном базисе равно разности размерностей пространства и подпространства.
Всякую систему относительно линейно независимых векторов над R1 можно дополнить до относительного базиса. Для этого нужно к выбранным векторам добавить какой-нибудь базис подпространства R1 . Получится некоторая система векторов из R, которые, как легко проверить, линейно независимы. Чтобы получить относительный базис, нужно дополнить эту систему до базиса во всем пространстве R, а затем отбросить базис подпространства.
Итак, пусть преобразование А в пространстве R имеет только одно собственное значение. Не ограничивая общности можно, предположить, что оно равно нулю.
3. Инвариантные множители
Определение. Матрицы А и А1 = С-1 АС , где С – произвольная невырожденная матрица, называются подобными .
Если А1 подобна матрице А2 , то и обратно, А2 подобна А1 . Если две матрицы А1 и А2 подобны одной и той же матрице А , то они подобны между собой.
Пусть А – матрица преобразования А в некотором базисе. При переходе к другому базису матрица А заменяется подобной ей матрицей С-1 АС , где С – матрица перехода от первого базиса ко второму. Таким образом, подобные матрицы – это матрицы одного и того же линейного преобразования в различных базисах.
Лемма. Если С – произвольная невырожденная матрица, то общие наибольшие делители миноров k -го порядка матриц А - l Е и С(А - l Е) совпадают. Аналогичное утверждение имеет место и для (А - l Е)С .
Лемма. У подобных матриц многочлены Dk (l) совпадают .
Так как при переходе от одного базиса к другому матрица линейного преобразования заменяется подобной, то из последней леммы вытекает следующая
Теорема. Пусть А – линейное преобразование. Тогда наибольший общий делитель Dk (l) миноров k -го порядка матрицы А - l Е , где А – матрица преобразования А в некотором базисе, не зависит от выбора базиса.
Для того чтобы существовал базис, в котором матрица преобразования диагональна, необходимо и достаточно, чтобы инвариантные множители этой матрицы имели лишь простые корни.
Теорема. Для того чтобы две матрицы были подобны, необходимо и достаточно, чтобы их инвариантные множители совпадали.
Теорема. Нормальная форма линейного преобразования однозначно определяется самим линейным преобразованием.
Заключение
«Образность того или иного явления или предмета, прочность закрепления его в памяти находится в прямой зависимости от силы впечатления произведенного этим предметом или явлением.»
Абай, Слова назидания, Слово 43.
А., 1982. Перевод С.Санбаева.
Курсовая работа, описывающая канонический вид произвольных линейных преобразований, включает в себя 3 небольших раздела. Каждый раздел содержит необходимые определения, подробно разобранные примеры, упражнения с подробно разобранными решениями..
В основном курсовая работа написана по Гельфанду И.М. «Лекции по линейной алгебре». Также помогали в написании этой работы Гельфанду И.М. и самостоятельно занимались этим разделом алгебры (и не только): Граев М.И., Пономарев В, Шапиро З.Я., Курош А.Г., Фомин С.В., Цетлин М.Л., Турецкий А.Е. и Райков Д.А.
Эту курсовую работу можно использовать для чтения лекций по линейной алгебре, а именно раздела курса: линейные преобразования. Конечно же, при чтении лекции полностью на эту работу опираться нельзя, так как она не охватывает все виды линейного преобразования и требует определенного дополнения.
Литература
1. Гельфанд И. М. Лекции по линейной алгебре. М., 1971.
2. Курош А. Г. Курс высшей алгебры. М., 1971.
3. Мальцев А. И. Основы линейной алгебры. М., 1956.