Курсовая работа: Химия гидразина

В своих ранних исследованиях Рашиг обнаружил, что гипохлорит натрия и аммиак сначала реагируют с образованием хлорамина. Он показал, что эта реакция протекает довольно быстро и может быть выражена уравнением (1):

NaOCl+ NH3 → NH2Cl+ NaOH.(1)

Синтез гидразина, по данным Рашига, обусловлен действием избытка аммиака на хлорамин в соответствии с уравнением (2).

NH2Сl+ NH3 + NaОН → N2Н4 + NaСl+ Н2O.(2)

Реакция (2) протекает медленно; она конкурирует с реакцией (3), которая возникает, осложняя процесс. Реакция (3) протекает значительно быстрее; она особенно чувствительна к действию некоторых катализаторов и очень сильно снижает выходы гидразина. Реакция (3) может быть изображена уравнением

2NH2Сl+ N2Н4 →2NН4Сl+ N2.(3)

Было найдено, что добавление белковых веществ, например, клея, желатины и альбумина, заметно препятствует реакции (3) и способствует реакции (2), приводя, следовательно, к получению более удовлетворительных выходов гидразина.

Синтез Рашига был с исчерпывающей полнотой изучен многими исследователями с целью определения наилучших условий для достижения максимального выхода. Интерес к этому методу привел к исследованию хлорамина, нахождению оптимальных соотношений между аммиаком и гипохлоритом, обеспечивающих максимальный выход, изучению влияния катализаторов (ингибиторов) и их концентраций на выход гидразина, а также температурных условий, при которых происходит смешивание и протекают последующие реакции.


2.СТРОЕНИЕ МОЛЕКУЛЫ И ДИПОЛЬНЫЙ МОМЕНТ

Большой дипольный момент гидразина (1,83—1,90 дебая) связан с не­которыми очень интересными вопросами, касающимися его строения. В принципе возможно несколько различных структур, отличающихся друг от друга положением атомов водорода по отношению к оси азот — азот в молекуле гидразина. Гидразин можно рассматривать как производное аммиака, в котором вместо одного из атомов водорода находится второй атом азота, расположенный в той же плоскости, что и три атома водорода молекулы аммиака. При этом получается симметричная структура, в которой противоположные моменты связей N—Н должны компенсировать друг друга и давать суммарный дипольный момент, равный нулю. Такая симметричная структура является маловероятной, о чем свидетельствуют как высокий дипольный момент гидразина, так и данные, полученные при изучении этого вопроса, в особенности результаты исследования инфракрасного спектра гидразина. Сначала предполагали, что имеется возможность свободного вращения вокруг оси азот—азот, благодаря чему может существовать любая из возможных форм; считалось также, что большой дипольный момент является результатом равновесия, которое устанавливается между этими предельными структурами. Более поздние исследования N-замещенных гидразина, особенно фенилгидразина и других арилзамещенных, показывают, что эти вещества также характеризуются относительно большими дипольными моментами. Эти дополнительные исследования заставляют предположить, что вращение вокруг оси азот — азот ограничено, если оно вообще возможно. Поэтому симметричная транс-форма маловероятна. Если вращение ограничено, то большой дипольный момент может быть объяснен только конфигурацией, соответствующей изображенной на рис. 2 цис-форме.

Если связи N—Н расположены в пространстве так, как это указано на рисунке, то очевидно, что цис-форма гидразина должна иметь два стереоизомера. Эти выводы подтверждают предположение, впервые высказанное Пенни и Сазерлендом, которые вычислили, что дипольный момент структуры, соответствующей несимметричной цис-форме, равен 1,70 дебая; они предположили также, что валентные углы N—N—Н и Н—N—Н составляют приблизительно 110°С. Электронографические исследования паров гидразина показывают, что углы Н—N—Н и Н—N—N прибли­зительно составляют 108±10°С. Межатомные расстояния равны:

rN-H=1,04 ± 0,06Е и rN-N= 1,47 ± 0,02 Е. Эти значения валентных углов и межатомных расстояний очень близки к соответствующим значениям для молекулы аммиака. Возможно также, что гидразин существует в таутомерной аминоимидной форме, Н3N → NН, и что протон при этом способен мигрировать, образуя молекулу с указанной структурой.


Рис. 1. Структуры гидразина.

а—в перспективе; б— ось N-Nперпендикулярна к плоскости рисунка.

Возросший интерес к гидразину и его производным обусловлен отчасти использованием некоторых гидразинов в военной технике [и космических исследованиях] в качестве ракетных топлив, а также разнообразным применением производных гидразина в медицине и сельском хозяйстве.

Гидразин—весьма реакционноспособное соединение: он окисляется на воздухе, окисление протекает через промежуточное образование диимида, давая азот. Как уже отмечалось, превращение гидразина в элементарный азот сопровождается выделением большого количества энергии. Поэтому, а также в результате легкости его получения по методу Рашига гидразин нашел широкое применение в. качестве ракетного топлива. Если использовать его в сочетании с азотной кислотой как окисляющим агентом, то газообразные продукты окисления гидразина (азот, окислы азота) развивают очень эффективную тягу. Некоторыми недостатками гидразина как топлива являются высокая температура плавления, малая стабильность на воздухе и коррозионная активность, затрудняющие хранение и работу с ним.

Из трехфтористого азота при повышенной температуре был получен тетрафторгидразин, но, как и ожидалось, наличие сильно электроотрицательных атомов фтора делает это соединение еще менее стабильным, чем гидразин. Метилгидразин, превосходя гидразин по некоторым физическим показателям, по-видимому, вытеснит последний как жидкое ра­кетное топливо.

Производные гидразина можно разделить на моно-, ди-, три- и тетразамещенные:

RNH-NH2 RNH-NHR

1 2а 2б 3 4

Дизамещенные гидразины 2 следует подразделить на два класса и рассматривать их отдельно, так как первичная аминная функция в 1,1-дизамещенных гидразинах 2б обусловливает свойства, которыми не обладают 1,2-дизамеш.енные гидразины 2а.

Был описан удобный метод аминирования вторичных и третичных аминов до гидразинов и гидразиниевых солей О-гидроксиламинсульфокислотой:

NH 2 O S О3H + R 2 NH —>- R 2 N—NH 2 + H 2S О4

Этот реагент является удобным источником частиц NH2 и может найти в будущем более широкое применение.

Сильно нуклеофильный характер гидразина и алкилгидразинов проявляется в различных реакциях. Так, ряд активированных ароматических галогенпроизводных можно вве­сти в реакцию с гидразином, в результате образуются арилгидразины:


Аналогично гидразин атакует олефины, обедненные электронами, например б,в-ненасыщенные сложные эфиры, с последующей циклизацией в пиразолидоны:


ArCH = CHCOOR + H2N—NH2 → ArCHCH2COOR →

NH — NH2

Интересный вариант приведенной выше реакции был най­ден при взаимодействии 1, 1-диалкилгидразинов и акролеина. Здесь начальная атака более нуклеофильного трехзамещен-пого атома азота с последующей циклизацией приводит к четвертичной пиразолиниевой соли. Мягкое разложение этой соли щелочью разрывает связь N—N, давая в-аминонитрил :


К-во Просмотров: 381
Бесплатно скачать Курсовая работа: Химия гидразина