Курсовая работа: Химия гидразина

Первой стадией этой реакции является образование диметилгидразона, циклизующегося в кислой среде. Последняя стадия представляет собой один из частных случаев аминонитрильной перегруппировки четвертичных альдогидразониевых структур под действием щелочей.

МОНОЗАМЕЩЕННЫЕ ГИДРАЗИНЫ

Монозамещенные гидразины 1 по химическим свойствам подобны незамещенному родоначальнику и также легко окисляются многими окислителями, включая воздух. Другие окислители легко реагируют с монозамещенными гидразинами; так, бром окисляет фенилгидразин до бромбензола и азота. Алкилирование монозамещенных гидразинов дает 1, 1-диалкил- и более замещенные гидразины. Фенилгидразин алкилируется по первому замещенному атому азота (1), хотя многие утверждали, что он метилируется йодистым метилом по второму атому азота, образуя 1-фенил-2-метилгидразин.

Следует отметить, что из возможных переходных состояний при алкилировании замещенного гидразина возникающий положительный заряд будет больше стабилизирован при замещенном атоме азота; промежуточное соединение уравнения (1) стабилизировано индуктивным эффектом ароматического кольца, что невозможно в альтернативном 1,2-ди-замещенном промежуточном соединении:


(1)

(2)

Монозамещенные гидразины реагируют с различными карбонильными соединениями. В реакции с альдегидами или кетонами продуктами будут гидразоны и вода. С карбоновыми кислотами, хлорангидридами или сложными эфирами образуются 1-замещенные гидразиды .

Из многих гидразинов типа 1 фенилгидразин нашел применение в химии углеводов (например, образование озазонов), а 2,4-динитрофенилгидразин широко используется при идентификации альдегидов и кетонов в виде твердых динитрофенилгидразонов.

ДИЗАМЕЩЕННЫЕ ГИДРАЗИНЫ

1,2-Дизамещенные гидразины

Отщепление азота при окислении 1,2-дизамещенных гидразинов 2а включает две стадии, и промежуточное соединение часто можно выделить, особенно когда R или R' (или же оба) — ароматические группы:

RNH—NHR' → RN = NR' → R—R' + N2

В этой реакции были использованы различные окислители, включая окись ртути, хлорное железо и перманганат калия. Некоторые 1,2-дизамещенные гидразины, особенно те, в которых гидразинный фрагмент заключен в циклическую структуру, окисляются до соответствующих азосоединений при стоянии на воздухе. Многие из промежуточных азосоеди­нений были выделены и затем разложены при нагревании или на свету до азота и углеводородов. Природа заместителей R и R' в этих азосоединениях определяет их устойчивость. Если R и R'— простые алкильные группы, для выделения азота требуется повышенная температура; некоторые циклические и бензилзамещенные азосоединения разлагаются при комнатной температуре; ароматические же азосоединения вполне устойчивы, 1,2-Диалкилгидразины реагируют с алифатическими альдегидами, давая 1,3, 4-оксадиазолидины, которые можно превратить в 1,2,4-триазолидипы реакцией с первичным амином:

Соединения с двумя атомами азота, связанными через метиленовую группу, можно рассматривать как 1,2-дизамещенные гидразины. Было показано, что трехчленные циклические гидразины можно легко приготовить общим методом из хлорамина и азометинов:

Диазиридины растворяются в органических растворителях, медленно реагируют с кислотой, устойчивы к щелочи и нагреванию (до 100° С). Альтернативным синтетическим методом может служить присоединение реактивов Гриньяра к диазиринам (трехчленным циклическим азосоединениям) с образованием N-алкилдиазиридинов, последние могут дальше гидролизоваться в алкилгидразины:


B аналогичной реакции 2-метилдиазирина с этилмагнийбромидом получается 1-этил-2-метилдиазиридин, который может также быть приготовлен из хлорамина и этилиденэтиламина:

Известны многие другие примеры циклических гидразинов, в которых оба атома азота включены в цикл. О синтезе четырехчленных циклических гидразинов сведений мало, известна, например, реакция активированных олефинов с диэтил-азокарбоксилатом:

Под влиянием кислот ароматические 1,2-дизамещенные гидразины подвергаются перегруппировкам типа бензидиновой. Механизм этих реакций был предметом интенсивных исследований, и, по-видимому, он включает образование «протонного сандвича»:

Изучалось поведение 1,2-диалкилгидразинов в условиях реакции Манниха. Реакция гидрохлоридов 1, 2-дизамещенных гидразинов с формальдегидом и ацетофеноном приводит к 3-фенил-1,2-диалкил-Д3-пиразолинам:

С 6Н 5 С О С Н 3 + (CH 2O)x + RHN—NHR • НС1 → [C6H5COCH2 CH2 NR-NHR]→

1,1-Дизамещенные гидразины

Благодаря первичной аминной функции 1, 1-дизамещенные гидразины 2б способны к некоторым реакциям, невозможным у изомерных 1,2-дизамещенных гидразинов. Окисление 1,1-дизамещенных гидразинов может привести к двум продуктам и, вероятно, протекает через промежуточный N-нитрен:

Сочетание двух частиц нитрена или, что более вероятно, реакция нитрена с непрореагировавшим гидразином (по типу а) дает тетразены. Наблюдалось также разложение нитрена с образованием азота и углеводорода (по типу б). Продукты окисления зависят от природы заместителей R и R', однако обычно окисление дает тетразен. В некоторых случаях окисление 1,1-дизамещенных гидразинов приводит непосредственно к выделению азота и образованию углеводородо. Этот последний путь, называемый «аномальным окислением», требует, чтобы замещающие группы могли стабилизировать промежуточные фрагменты, образующие новую углерод-углеродную связь. Этими свойствами обладают такие группы, как бензнльная и цианометиленовая:

C6H5CH2NCH2C6H5 + HgO→ С6Н5СН2СН2С6Н5 + N2 + Hg + Н2О

NH2

К-во Просмотров: 385
Бесплатно скачать Курсовая работа: Химия гидразина