Курсовая работа: Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число
;
--- класс всех минимальных не
-групп, т. е. групп не принадлежащих
, но все собственные подгруппы которых принадлежат
;
--- класс всех
-групп из
;
--- класс всех конечных групп;
--- класс всех разрешимых конечных групп;
--- класс всех
-групп;
--- класс всех разрешимых
-групп;
--- класс всех разрешимых
-групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной
.
Если и
--- классы групп, то:
.
Если --- класс групп и
--- группа, то:
--- пересечение всех нормальных подгрупп
из
таких, что
;
--- произведение всех нормальных
-подгрупп группы
.
Если и
--- формации, то:
--- произведение формаций;
--- пересечение всех
-абнормальных максимальных подгрупп группы
.
Если --- насыщенная формация, то:
--- существенная характеристика формации
.
-абнормальной называется максимальная подгруппа
группы
, если
, где
--- некоторая непустая формация.
-гиперцентральной подгруппой в
называется разрешимая нормальная подгруппа
группы
, если
обладает субнормальным рядом
таким, что
(1) каждый фактор является главным фактором группы
;
(2) если порядок фактора есть степень простого числа
, то
.
---
-гиперцентр группы
,
Введение
Известно, что любая конечная группа вида , где
и
---
-замкнутые подгруппы и индексы
,
не делятся на некоторое простое число
, является
-замкнутой.
В работе [38] В.Н. Тютянов доказал, что любая конечная группа вида , где
и
---
-нильпотентные подгруппы и индексы
,
не делятся на некоторое простое число
, является
-нильпотентной группой.
В связи с этим результатом можно сформулировать следующую проблему.
Проблема. Классифицировать наследственные насыщенные формации , содержащие любую группу
, где
и
принадлежат
и
содержит некоторую силовскую подгруппу группы
.