Курсовая работа: Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число

1. Описание -формаций Шеметкова

Важную роль при получении основных результатов данной главы сыграли формации Шеметкова, т. е. такие формации , у которых любая минимальная не -группа является либо группой Шмидта, либо группой простого порядка.

Впервые наследственные насыщенные разрешимые формации Шеметкова были описаны в работе [22]. Затем в работах [9] и [50, 51] были описаны произвольные наследственные насыщенные формации Шеметкова.

Определение. Формация называется -формацией Шеметкова, если любая минимальная не -группа --- либо группа простого порядка, либо группа Шмидта с нормальной -силовской подгруппой.

Приведем пример -формаций Шеметкова.

1.1 Пример. Если --- формация всех -нильпотентных групп, то --- -формация Шеметкова.

Пусть --- произвольная минимальная не -группа. Известно, что группа является разрешимой. Покажем, что является группой Шмидта с нормальной -силовской подгруппой. Так как не -нильпотентная группа, то . Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа, --- примарная -группа, , где --- максимальный внутренний локальный экран формации . Покажем, что . Действительно, если , то из того факта, что -нильпотентна, а значит и так же -нильпотентна, следует, что -нильпотентна, что невозможно. Известно, что формацию можно представить в виде . Согласно лемме 2.2.20, . Очевидно, что любая минимальная не -группа есть группа простого порядка . Итак, --- группа Шмидта. Пусть . Выше показано, что --- группа Шмидта с нормальной -силовской подгруппой. Теперь, в виду леммы 2.2.2 и леммы 4.1.1, является группой Шмидта с нормальной -силовской подгруппой. А это значит, что --- -формация Шеметкова.

1.2 Лемма [14-A, 21-A]. Пусть , , --- непустые формации. Тогда .

Доказательство. Пусть --- произвольная группа из . Тогда . Отсюда следует, что и . А это значит, что .

Пусть --- произвольная группа из . Отсюда следует, что и . Тогда и . Итак, . А это значит, что . Лемма доказана.

Пусть --- насыщенная формация, а --- ее максимальный внутренний локальный экран, --- характеристика формации . Обозначим через --- множество простых чисел из таких, что , где --- простое число из .

1.3 Лемма. Пусть --- насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда

Доказательство. Известно, что для любой насыщенной формации справедливо следующее равенство

Отсюда следует, что


По лемме 5.1.2,

Лемма доказана.

1.4 Теорема [14-A, 21-A]. Пусть --- наследственная насыщенная формация. Тогда следующие утверждения эквивалентны:

1) --- -формация Шеметкова;

2) , где и .

Доказательство. Покажем, что из 1) следует 2). Из леммы 5.1.3 следует, что любую насыщенную формацию можно представить в виде

где --- максимальный внутренний локальный экран формации . Покажем, что если --- -формация Шеметкова, то

Действительно, очевидно, что


К-во Просмотров: 266
Бесплатно скачать Курсовая работа: Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число