Курсовая работа: Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа

Содержание

Введение

1. Описание способа решения задачи

2. Теоретическая часть

2.1 Что такое Data mining и KDD?

2.2 Описание рассматриваемых хакерских атак

2.2.1 Подмена одного из субъектов TCP-соединения в сети Internet

2.2.2 Нарушение работоспособности хоста в сети Internet при использовании направленного “шторма” ложных TCP-запросов на создание соединения либо при переполнении очереди запросов

2.2.3 Другие виды атак

2.3 Сеть с самоорганизацией на основе конкуренции

2.3.1 Состав сети Кохонена

2.3.2 Меры расстояния между векторами

2.3.3 Способы нормализации входных данных

2.3.4 Алгоритм обучения карты Кохонена

2.3.5 Механизм утомления

2.3.6 Алгоритм нейронного газа

3. Формализация задачи

4. Эксперимент

5. Результаты работы модели

Заключение

Список используемой литературы

Листинг программ


Введение

Наряду с развитием средств электронной связи происходило развитие средств нарушения работоспособности информационных каналов. В настоящее время усиливается оснащение вычислительной техники механизмами защиты от несанкционированного доступа, вирусов, спама, хакерских атак и т.д. Это так называемые брандмауэры, файрволлы, фильтры пакетов. Операционные системы также усиливают свой боевой арсенал. Несмотря на это ежедневно продолжается нарушаться работа различных компьютеров: от головных серверов до рабочих станций от действия вредоносных программ. В данной работе автор хотел расклассифицировать группы входящих пакетов, поступающих на одну из рабочих станций в ЛВС, методами интеллектуального анализа данных. Впоследствии, зная принадлежность той или иной группы к классу хакерских атак, по заданному количеству поступивших пакетов можно определить грядущую угрозу рабочей станции.


1. Описание способа решения задачи

Во-первых, следует выбрать параметры, позволяющие оценить текущее состояние входящего трафика. Из-за того, что по одному пакету нельзя определить начало атаки, то параметры должны быть интегральными по некоторой группе пакетов. Это можно сделать путём оценивания n-подряд идущих пакетов, причём чем больше n, тем более точным должен быть результат классификации.

Во вторых, необходимо создать интеллектуальную базу данных для построения интеллектуальной модели системы, это можно сделать путём проведения серии экспериментов, чередуя посылку пакетов, вызванных злонамеренными действиями, и обычных пакетов между компьютерами.

Третьим шагом, служит создание интеллектуальной системы оценивания входящих пакетов, причём обучающей базой для построения модели служит база созданная на шаге 2.

Наконец, после обучения интеллектуальной системы требуется объяснить результаты моделирования и проверить работу модели в реальных условиях.


--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 210
Бесплатно скачать Курсовая работа: Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа