Курсовая работа: Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа

2.3.6 Алгоритм нейронного газа

В этом алгоритме на каждой итерации все нейроны сортируются в зависимости от их расстояния до вектора x. После сортировки нейроны размечаются в последовательности, соответствующей увеличению удалённости.

где dk=|x-wm(i)| обозначает удалённость i-того нейрона, занимающего в результате сортировки m-ю позицию в последовательности, возглавляемой нейроном-победителем, которому сопоставлена удаленность d0. Значение функции соседства для i-того нейрона G(i,x) определяется по формуле:

в которой m(i) обозначает очерёдность, полученную в результате сортировки (m(i)=1,2,3,…,n-1), а лямбда - параметр, аналогичный уровню соседства в алгоритме Кохонена, уменьшающийся с течением времени. При лямбда =0 адаптации подвергается только нейрон-победитель, и алгоритм превращается в обычный алгоритм WTA, но при уточнению подлежат веса многих нейронов, причём уровень уточнения зависит от величины G(i,x).

Для достижения хороших результатов самоорганизации процесс обучения должен начинаться с большого значения лямбда, однако с течением времени его величина уменьшается до нуля.


3. Формализация задачи

В качестве группы пакетов, выступающих в качестве обучающего примера, возьмём 10 подряд идущих поступающих на рабочую станцию пакетов. Для построения модели оценим в каждой группе следующие параметры:

1.Число пакетов поступивших от хостов “своей” ЛВС.

2.Число фрагментированных пакетов.

3.Число TCP-пакетов.

4.Число UDP-пакетов.

5.Максимальное число пакетов в группе, пришедших от одного из хостов-отправителей.

6.Принадлежность хоста, отправителя наибольшего числа пакетов. (1 - “своя” ЛВС, 0 - иначе)

7.Средняя загрузка процессора (без учёта приложений не связанных с сетью). (%)

8.Изменение загрузки процессора с времени получения первого пакета до времени получения последнего пакета (без учёта приложений не связанных с сетью).(%)

9.Средний размер пакета. (байт)

10.Число пакетов размером в интервале с 0.8*x до 1.2*x, где x – средний размер пакета.

11. Число доступных хостов.

12. Число различных хостов.

Вышеперечисленные параметры будут являться входами модели. Пользователю следует определить размер карты Кохонена, а также параметры настройки нейронной сети. Остаётся только сгенерировать различные пакеты TCP, UDP и ICMP как обычные, так и “хакерские”, и переслать их на хост, ведущий журнал входящих пакетов и их параметров. Из данного журнала пакеты объединяются в группы (10 последовательно идущих пакетов). Для каждой группы определяются выделенные интегральные критерии.

Полученные данные служат для самообучения сети.


4. Эксперимент

На локальную станцию (192.168.0.3) поступают следующие пакеты:

TCP – обычные пакеты от станций собственной ЛВС. Соединение происходит в обычном режиме. Передача файлов.

ICMP – обычные пакеты, “проверка связи”.

UDP – обычные пакеты от станций ЛВС, обмен данными между приложениями BroodWar, Blizzard Intertainment.

TCP – обычные пакеты от хостов, на принадлежащих “своей” ЛВС, передача файлов.

К-во Просмотров: 213
Бесплатно скачать Курсовая работа: Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа