Курсовая работа: Кластеризация групп входящих пакетов с помощью нейронных сетей конкурирующего типа
ICMP – пакеты, являющиеся следствием широковещательного шторма.
UDP – “хакерские” пакеты (посылка широковещательного шторма).
TCP – “хакерские” пакеты, фрагментрованные и не связанные между собой (aтака на файрфолл).
Эксперимент представляет собой посылку и запоминание чередующихся обычных и “опасных” пакетов. Причём в группе, относящийся к классу зарождающейся атаки, могут присутствовать и совершенно безвредные пакеты с данными и сообщениями. Того как заранее определённое число пакетов было получено и после предобработки в группы произошло обучение модели, необходимо произвести визуализацию карты Кохонена. На карте, состоящей из квадратов, где за каждый квадрат отвечает один нейрон, производится заливка в зависимости от класса опасности. Нейроны, отвечающие за класс - тотальная атака (большое число опасных пакетов), окрашиваются в более тёмно красные цвета, нейроны, классифицирующие обычную работу станции в сети (приём-передача данных), окрашены в более нейтральные цвета.
5. Результаты работы модели
1.Стандартный алгоритм Кохонена. Карта 10*10 нейронов.
Рис.5 Визуализация карты Кохонена при обучении стандартным алгоритмом Кохонена
Из-за того что многие нейроны после обучения остались мертвыми нейронная сеть имеет высокую погрешность квантования.
Самые опасные классы характеризуются следующими параметрами: небольшие по размеру пакеты, значительное количество пакетов одного типа, например только ICMP или UDP, и одного размера, во время получения этих групп пакетов происходит существенная загрузка процессора, значительная часть хостов - отправителей не доступны. Другим опасным классом является кластер с большими по размерам фрагментированными пакетами.
2.Стандартный алгоритм Кохонена с учётом соседства. Карта 10*10 нейронов.
Рис.6 Визуализация карты Кохонена при обучении стандартным алгоритмом