Курсовая работа: Колебания маятника с различными механизмами затухания
,
Уравнение движения частицы примет следующий вид:
, (1.35)
где
. (1.36)
Подставляя последнее в (1.35), получим:
(1.37).
Так как полученное уравнение верно для произвольного момента времени, то выражение в скобках должно быть нулем. Последнее дает для неизвестной величины следующее значение
(1.38)
где
, (1.39)
Учитывая (1.38), решение (1.36) примет следующий вид:
, (1.40)
Полученное уравнение движения описывает затухающие колебания, где и – постоянные, определяемые из начальных условий.
В зависимости от соотношения коэффициента трения и частоты собственных колебаний , затухающие колебания подразделяются на два класса. Они соответствуют случаям периодического и непериодического затухания.
Периодическое затухание. Оно осуществляется при слабых силах трения:
, (1.41)
когда величина (1.39) действительна. В этом случае решение (1.40) выражается формулой (в действительной форме)
, (1.42)
Графически это колебание представлено на рисунке (см. приложение 2) и является колебанием с постоянной частотой (1.39), но убывающей с течением времени амплитудой. В этом смысле это не только не гармоническое, но даже и не периодическое колебание, поскольку колебания не повторяются в том же виде. Тем не менее, удобно говорить о периоде этих колебаний, понимая под этим промежуток времени
, (1.43)
Говоря «амплитуда затухающих колебаний» понимают величину
, (1.44)
которая есть максимальное смещение частицы относительно положения равновесия во время колебаний. Из выражения (1.44) следует, что за время , (1.45) амплитуда убывает в раз. Этот промежуток времени называется временем затухания, а – декрементом затухания.
Наиболее объективной характеристикой затухания колебаний является логарифмический декремент, который является отношением периода колебаний (1.43) к времени затухания (1.45)
, (1.46)
Легко заметить, что логарифмический декремент равен натуральному логарифму отношения двух последующих амплитуд:
, (1.47)