Курсовая работа: Колебания маятника с различными механизмами затухания
откуда следует, что
, (1.48)
На основании этого соотношения можно экспериментально определить логарифмический декремент затухания , считая соответствующее число колебаний.
Непериодическое затухание. При сильном трении
(1.49)
величина (1.43) становится мнимой. В этом случае удобно представить (1.42) так:
, (1.50)
, (1.51)
В рассматриваемом случае решение (1.42) примет вид:
, (1.52)
которое не описывает какое-либо колебание, а представляет экспоненциональное убывание смещения от положения равновесия (см. приложение 3). Непериодическое затухание маятника можно наблюдать, если поместить его в сильно вязкую среду (глицерин, мед).
Специальным случаем непериодического затухания является случай, когда . В этом случае решение уравнения (1.35) выражается в виде:
, (1.53).
Заключение
Целью данной курсовой работы являлось изучение колебаний маятника с различными механизмами затухания. Для реализации поставленной цели предполагалось решение ряда задач, что позволило сделать следующие выводы:
На основании анализа существующей литературы даны определения исходных теоретических положений, а именно: колебания, виды колебаний, маятник (физический маятник, пружинный маятник), декремент затухания, добротность колебательной системы и т.д.
Также, исходя из проработанной литературы, сделан вывод о том, что данная тема изучалась и изучается многими авторами, как зарубежными, так и советскими, и находит практическая применение в различных науках.
Получены уравнения собственных затухающих колебаний на примерах физического и пружинного маятников.
,
где - коэффициент затухания,
- собственная частота свободных (незатухающих) колебаний пружинного маятника.
Таково полученное уравнение собственных затухающих колебаний пружинного маятника. Это уравнение описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для b и j0 .
a(t) = a0 ·e- b t ·sin(w·t + j),(3)
гдеw=(w0 2 - b2 )1/2 - частота затухающих колебаний груза.
Данное уравнение определяет быстроту процесса затухания колебаний физического маятника.
Определены два механизма затухающих колебаний: периодическое (осуществляется при слабых силах трения) и непериодическое (при сильном трении), а также получены формулы, для их расчета.
- для периодического механизма затухающих колебаний;