Курсовая работа: ЛИСП-реализация основных операций над нечеткими множествами
Обозначение: A М B.
Иногда используют термин "доминирование", то есть в случае если A М B, говорят, что B доминирует A.
2.2.2 Равенство
A и B равны, если
.
Обозначение: A = B.
2.2.3 Пересечение
Пересечением нечётких множеств A и B называется наибольшее нечёткое подмножество, содержащееся одновременно в A и B:
.
2.2.4 Объединение
- наименьшее нечеткое подмножество, которое включает как А, так и В, с функцией принадлежности:
2.2.5 Разность
с функцией принадлежности:
.
2.2.6 Произведение
Произведением нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:
.
2.2.7 Отрицание
Отрицанием множества A при называется множество
с функцией принадлежности:
.
2.2.8 Дизъюнктивная сумма
Дизъюнктивной суммой нечетких множеств A и B называется множество с функцией принадлежности:
.
2.3 Наглядное представление операций над нечеткими множествами
Для нечетких множеств можно применить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значение mA(x), на оси абсцисс в произвольном порядке расположены элементы E. Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.
Пусть A нечеткий интервал между 5 до 8 и B нечеткое число около 4, как показано на рисунке 1 и 2.