Курсовая работа: ЛИСП-реализация основных операций над нечеткими множествами
Рисунок 12 – Функциональная модель решения задачи для функции MULT (произведение)
Рисунок 13 – Функциональная модель решения задачи для функции ADDITION (отрицание)
Рисунок 14 – Функциональная модель решения задачи для функции DIZ_SUMM (дизъюнктивная сумма)
4. Программная реализация решения задачи
;СОДЕРЖАНИЕ mA(x) < mB(x)
;РАВЕНСТВО mA(X) = mB(X)
;ПЕРЕСЕЧЕНИЕ min( mA(x), mB(x))
;ОБЪЕДИНЕНИЕ max(mA(x), m B(x))
;РАЗНОСТЬ А - B = АЗ с функцией принадлежности: mA-B(x) = mA З (x) = min( mA(x), 1 - m B(x))
;ПРОИЗВЕДЕНИЕ mA(x)* m B(x)
;ОТРИЦАНИЕ A^ = 1-mA(X)
;ДИЗЪЮНКТИВНАЯ СУММА АЕB = (А - B)И(B - А) = (А З ) И( З B) с функцией принадлежности:
;mA-B(x) = max{[min{m A(x), 1 - mB(x)}];[min{1 - mA(x), mB(x)}] }
;СОДЕРЖАНИЕ
;ЕСЛИ МНОЖЕСТВО A СОДЕРЖИТСЯ В МНОЖЕСТВЕ B - РЕЗУЛЬТАТОМ ФУНКЦИИ БУДЕТ 0
(DEFUN CONTENT (X1 X2)
(COND
((NULL X1) 0)
((ATOM X1) (IF (> X1 X2) 1 0))
(T (+ (CONTENT (CAR X1) (CAR X2)) (CONTENT (CDR X1) (CDR X2))))
)
)
;РАВЕНСТВО
;ЕСЛИ МНОЖЕСТВО A РАВНО МНОЖЕСТВУ B - РЕЗУЛЬТАТОМ ФУНКЦИИ БУДЕТ 0
(DEFUN EQUAL_ (X1 X2)
(COND
((NULL X1) 0)