Курсовая работа: ЛИСП-реализация основных способов вычисления гамма-функции
или после изменения в правой части порядка интегрирования ,получаем:
откуда
(2.2)
заменяя в (2,1) , на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
Рисунок 2. График модуля гамма-функции на комплексной плоскости
При целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал, порядок которого на единицу меньше взятого значения аргумента. При n=1 в (2.4) имеем
2.2 Вычисление гамма функции
Для вычисления гамма-функции используется аппроксимация логарифма гамма-функции. Сама же гамма вычисляется через него.
Для аппроксимации гамма-функции на интервале x>0 используется формула (для комплексных z) такого вида:
.
Она похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности eps не превышает . Кроме того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: Re z > 0.
Для получения действительной гамма-функции на интервале x>0 используется рекуррентная формула Gam(z+1)=z*Gam(z) и вышеприведенная аппроксимация Gam(z+1). Также можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму.
Во-первых, при этом потребуется вызов только одной математической функции – логарифма, а не двух – экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция – быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.
Для аппроксимации LnGam() – логарифма гамма-функции – получается формула:
Значения коэффициентов Ck являются табличными данными (Таблица 1).
k | C |
1 | 2.5066282746310005 |
2 | 1.0000000000190015 |
3 | 76.18009172947146 |
4 | -86.50532032941677 |
5 | 24.01409824083091 |
6 | -1.231739572450155 |
7 | 0.1208650973866179e-2 |
8 | -0.5395239384953e-5 |
Таблица 1. Значения коэффициентов Ck
Сама гамма-функция получается из ее логарифма взятием экспоненты. .
3 Функциональные модели и блок-схемы решения задачи