Курсовая работа: ЛИСП-реализация основных способов вычисления гамма-функции
;ПРИМЕНЯЕМДЛЯПОЛОЖИТЕЛЬНЫХЧИСЕЛ
(PRINT (MAPCAR 'GAMMA FUNC) OUTPUT_STREAM)
;ПРИМЕНЯЕМДЛЯПОЛОЖИТЕЛЬНЫХЦЕЛЫХЧИСЕЛ
(PRINT (MAPCAR 'GAMMA_WHOLE FUNC) OUTPUT_STREAM)
;ПРИМЕНЯЕМДЛЯЛЮБЫХЧИСЕЛ
(PRINT (MAPCAR 'GAMMA_POINT FUNC) OUTPUT_STREAM)
(TERPRI OUTPUT_STREAM)
(CLOSE OUTPUT_STREAM)
;END
5 Пример выполнения программы
Пример 1.
Рисунок 7 – Входные данные. Вычисление гамма-функции для положительных целых чисел
Рисунок 8 – Выходные данные. Вычисление гамма-функции для положительных целых чисел
Пример 2.
Рисунок 9 – Входные данные. Вычисление гамма-функции для положительных чисел
Рисунок 10 – Выходные данные. Вычисление гамма-функции для положительных чисел
Пример 3.
Рисунок 11 – Входные данные. Вычисление гамма-функции для множества чисел
Рисунок 12 – Выходные данные. Вычисление гамма-функции для множества чисел
ЗАКЛЮЧЕНИЕ
Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях. Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Итогом работы можно считать созданную функциональную модель реализации основных способов вычисления гамма функции. Данная модель применима к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы