Курсовая работа: Локальные формации с метаабелевыми группами

2) для любого гомоморфизма группы ; в частности, если группа из нормализует и , то нормализует и

Лемма 2.6 Пусть – подгруппа нильпотентной группы , причем . Тогда

Доказательство. Для того чтобы доказать лемму, достаточно установить, что при любом натуральном выполняется включение:


При это верно, так как , а значит, . Предположим, что включение (*) справедливо при некотором . Тогда, используя лемму 2.5, получаем

Тем самым (*) доказано.

Теорема 2.3 (Брайант, Брайс, Хартли [1]). Если – такая подгруппа группы , что , то

Доказательство. Пусть – нильпотентная нормальная подгруппа группы , а – такая подгруппа из , что . Докажем индукцией по , что . Это верно, если . Поэтому будем считать, что . Рассмотрим следующие подгруппы прямого произведения

Очевидно, подгруппа нормализует и . Обозначим через подгруппу группы , порожденную подгруппами . Поскольку проекции на множители прямого произведения равны , то . Заметим еще, что , где нормальна в и нильпотентна как подпрямое произведение из .

Пусть – центр подгруппы , . Легко видеть, что , причем и поэлементно перестановочны; аналогично, и поэлементно перестановочны. Но тогда , абелева и нормальна в . Если , то , где , и если , то , что влечет . Следовательно, . Если абелева, то , и мы имеем


Предположим теперь, что . Ясно, что . Так как

то нильпотентна ступени . Так как , то изоморфна и имеет ступень , а потому согласно лемме 2.6 ее нормальное замыкание в имеет ступень . Так как нормализует и , то нормальна в . Итак, , причем . По индукции

Для группы и ее нильпотентной нормальной подгруппы ступени теорема также верна по индукции. Поэтому

Теорема доказана.

Теорема 2.4. (Нейман [1]) Формация, порожденная разрешимой группой, содержит лишь конечное число подформаций.

Доказательство. Пусть – подформация формации . Если , то по теореме 2.3 имеет место , что и требуется.

Экраны

Недостатком понятия групповой функции является то, что не всегда уплотнение -центрального ряда нормальными подгруппами является -центральным рядом.

Определение 3.1. Отображение класса всех групп в множество классов групп назовем экраном, если для любой группы выполняются следующие условия:

1) – формация;

2) для любого гомоморфизма группы ;

К-во Просмотров: 311
Бесплатно скачать Курсовая работа: Локальные формации с метаабелевыми группами