Курсовая работа: Математические модели в экономике

- вектор конечной продукции.

Матрицу коэффициентов прямых материальных затрат обозначим:


Тогда система уравнений 5 в матричной форме:

(6)

Последнее выражение это модель межотраслевого баланса или модель Леонтьева. При помощи модели можно:

Задав величины валовой продукции Х определить объемы конечной продукции Y:

(7)

где Е - единичная матрица.

Задав величины конечной продукции Y определить значение валовой продукции Х:

(8)

обозначим через В величину (Е-А) - 1 , т.е.

,

то элементы матрицы В будут .

Для каждой i отрасли:

- это коэффициенты полных материальных затрат, показывают какое количество продукции i отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j отрасли.

Для расчета экономико-математической модели межотраслевого баланса с учетом заданных величин:

Матрицы коэффициентов прямых материальных затрат:

Вектора валовой продукции:

Единичную матрицу, соответствующую матрице А примем:

Для расчета коэффициентов полных материальных затрат воспользуемся формулой:

К-во Просмотров: 549
Бесплатно скачать Курсовая работа: Математические модели в экономике