Курсовая работа: Математическое моделирование тепловой работы вращающейся печи
KCO2:=exp (ln(10)*(4.47–14700/TF));
{Константа равновесия для водяного пара}
KH2O:=exp (ln(10)*(3.05–13160/TF));
{Степень диссоциации углекислого газа}
ACO2:=exp (ln(2*sqr(KCO2)/PCO2)/3);
{Степеньдиссоциацииводяногопара}
AH2O:=exp (ln(2*sqr(KH2O)/PH2O)/3);
{Теплота диссоциации трехатомных газов, кДж/кг}
fHdis:=(12630*ACO2*PCO2+10800*AH2O*PH2O)/ROV;
end;
End;
{============================================================================}
Procedure tFurnace. HeatLine;
{============================================================================}
{Расчетрезультирующегоизлученияфакела}
var TG, FF, FW, PC, PH, PS, LR, K1, K2: real;
Begin
{Средняя температура факела на малом участке,°C}
TG:=(TP+TF) /2;
{Расчетная поверхность малого участка факела, м2}
FF:=2*PI*RF*D0;
{Внутренняя поверхность стенки печи, м2}
FW:=PI*DW*D0;
{Объёмные доли излучающих газов}
PC:=P1*PG+PT; {углекислый газ + топливо}
PH:=P2*PG; {водяной пар}
PS:=PC+PH; {трёхатомные газы}
{Эффективная толщина излучающего слоя, м}
LR:=1.8*RF;