Курсовая работа: Математическое моделирование тепловой работы вращающейся печи

{Параметры факела в начальном сечении зоны догорания}

GTB:=GT; GB:=GB0/G0; HHB:=HHF; RF:=DW/2;

XB:=X; XXB:=XB+X0; LXB:=LX;

MG:=(1-exp (ln(XXB/LXB)/SC2))/NB/X0/GTB;

While GT>0.01 do begin {переход к очередному сечению}

{Расстояние от горелки до расчётного сечения, D0*м}

X:=X+1;

{Параметры факела в предыдущем сечении}

TP:=TF; QP:=QF;

repeat {начало итераций}

{Расход несгоревшего топлива через расчетное сечение, кг/с}

GT:=GTB*exp (MG*(XB-X));

{Средняя энтальпия газов в расчетном сечении факела, кДж/кг}

HHF:=HHB+QT*(GTB-GT)/(1+GB); {без теплообмена}

HF:=HHF-QF/(1+GB)/G0; {c теплообменом}

{Средняя температура в расчетном сечении факела, °C}

ZT:=TF; TF:=(HF-fHDis)/CF; TK:=TF+273;

{Плотность газов в расчетном сечении факела, кг/м3}

ROF:=ROV*273/TK;

Gasheat; HeatLine;

until ABS (1-ZT/TF)<0.0001; {конецитераций}

{Вывод результатов на печать}

Result;

end;

Nomina;

End;

{============================================================================}

Procedure tFurnace. GasPost;

{============================================================================}

К-во Просмотров: 1029
Бесплатно скачать Курсовая работа: Математическое моделирование тепловой работы вращающейся печи