Курсовая работа: Математична логіка

Науковий керівник

Доцент

Шишко Л.C.

Виконавець студент денної

Рибакін В.В.

форми навчання 421 групи

Херсон 2008


План

Вступ

Розділ І. Логіка висловлювань.

1.1. Основні поняття логіки висловлювань.

1.2. Закони логіки висловлювань.

1.3. Нормальні форми логіки висловлювань.

Розділ ІІ. Логіка предикатів.

2.1. Основні поняття логіки предикатів.

2.2. Закони логіки предикатів.

2.3. Випереджена нормальна форма логіки предикатів.

Література.


Вступ

Математична логіка займає одне з найважливіших місць у сучасній математичній науці. Вона знайшла широке застосування в найрізноманітніших галузях наукових досліджень. Математична логіка з великим успіхом використовується в теорії релейно-контактних схем і в теорії автоматів, тобто в кібернетиці, в лінгвістиці, в економічних дослідженнях, у фізіології мозку і психології тощо.

Актуальність. Математична логіка дуже важлива для вчителів математики. Вона дає можливість краще зрозуміти структурно-логічну схему шкільного курсу математики, глибше вникнути в суть поняття доведення, з’ясувати зміст поняття логічного слідування, встановити зв’язки між різного роду теоремами тощо. З цих причин Я й обрав дану тему для написання курсової роботи. На мою думку ця тема є важливою в математиці. Тому що розвиток математичної логіки як науки дав значний вплив у розвитку математичної науки. Значну внесок у розвиток математичної логіки зробили такі вчені як: Платон, Аристотель, Лейбніц, Буль, Гільберт.

Об’єктом дослідження є основні поняття математичної логіки.

Історично математична логіка будувалась як алгебраїчна теорія, у якій зв’язки між різними поняттями логіки виражалися за допомогою операцій. Така побудова математичної логіки згодом дістала назву алгебри висловлень і алгебри предикатів, причому алгебра висловлень уходить як частина в алгебру предикатів. Вона називається також змістовною побудовою математичної логіки і нею часто вичерпується виклад математичної логіки, причому апарату логіки предикатів достатньо, щоб ставити і розв’язувати досить важливі й складні задачі. Поряд з потребою змістовної побудови математичної логіки виникла потреба будувати математичну логіку як формально-аксіоматичну теорію, для якої алгебра предикатів є однією з можливих інтерпретацій.

У першому розділі розглянуто змістовні поняття й елементи логіки висловлень. Разом із цим, уже в першому розділу курсової роботи вводиться проблематика множин і логіки, яка істотно використовується в штучному інтелекті. А в другому розділі описано логіку предикатів.


Розділ І. Логіка висловлювань.

1.1. Основні поняття логіки висловлювань

Висловлюванням називають розповідне речення, про яке можна сказати, що воно або істинне, або фальшиве, але не одне й інше разом. Розділ логіки, що вивчає висловлювання та їхні властивості, називають пропозиційною логікою, або логікою висловлювань. Уперше систематичне викладення логіки було зроблене грецьким ученим Аристотелем понад 2300 років тому.

Приклад 1.1. Наведемо приклади речень.

1. Сніг білий.

2. Київ - столиця України.

3. х+1=3.

4. Котра година?

5. Читай уважно!

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 246
Бесплатно скачать Курсовая работа: Математична логіка