Курсовая работа: Метод кусочного размножения оценок при обработке реализаций сигналов ограниченного объема
При выражение (10) имеет вид:
(13)
Выражения (11)–(13) эквивалентны ранее полученным выражениям в работе [2]. В отличие от выражений, полученных на основе неортогональных полиномов [2], использование выражения (10) позволяет увеличить степень аппроксимирующего полинома без пересчета ранее полученных оценок. Анализ выражений (12) и (13) показывает, что степень аппроксимирующего полинома может быть увеличена путем вычисления дополнительных членов суммы. Такое свойство (10) позволяет модифицировать предлагаемый способ оценивания. Обладая дополнительной информацией о выделяемом полезном сигнале на локальном участке обработки, можно увеличивать или уменьшать степень аппроксимирующего полинома, тем самым ввести элементы адаптации.
На рис. 2 представлен пример разбиения исходной реализации на перекрывающиеся интервалы одинаковой длины и аппроксимации на каждом из функцией пространства (2) при , при этом модель исходной реализации представляет собой функцию этого же пространства с .
Рис. 2. Пример разбиения исходной реализации на пересекающиеся интервалы постоянной длины и аппроксимации на каждом из них значений сигнала линейной функцией
На рис. 3 представлены результаты вычисления оценки сигнала на основе выражения (12). Кривая 1 представляет собой исходный сигнал, а кривая 2 – его оценку. Множество оценок полезного сигнала, полученные в каждый момент , представлены крестиками (рис. 3). На основе их значений в соответствии с выражением (12) получаем оценку полезной составляющей (кривая 2). Несовпадение исходной реализации с оценкой полезной составляющей на начальном участке реализации объясняется тем, что количество оценок полезной составляющей в каждый момент является неодинаковым и увеличивается до момента . При количество оценок постоянно и равно длине выбранного ранее окна , а ошибка оценки полезного сигнала меньше, чем .
Рис. 3. Пример получения множества оценок полезного сигнала в каждом сечении исходного процесса (1) и формировании на их основе результирующей оценки (2) при отсутствии аддитивной шумовой составляющей
На рис. 2 и 3 представлена только часть реализации. Для третьего интервала оценивания результат оценки схож с первым интервалом .
Недостатком предлагаемого метода обработки является то, что для первых и последних значений исходной реализации множество оценок содержит различное количество элементов (рис. 1). Следствием этого является увеличение ошибки оценки полезной составляющей на интервалах и (рис. 3). Для уменьшения погрешности оценки полезной составляющей на интервалах и предлагается модифицировать разбиение исходной реализации на этих интервалах. Для этого вводится дополнительный параметр , который имеет смысл минимальной длины окна разбиения.
Для осуществления разбиения исходной реализации задается значение и , при этом необходимо, чтобы выполнялось условие . На начальном интервале исходная реализация разбивается на перекрывающиеся интервалы с фиксированной левой границей и нарастающей длиной интервала разбиения от до , как показано на рис. 4.
Рис. 4. Пример модифицированного разбиения исходной реализации на перекрывающиеся интервалы с изменяющейся длиной интервала разбиения в начале и конце выборки
На интервале разбиение исходной реализации осуществляется с уменьшением длины интервалов до минимального значения с фиксированной правой границей (рис. 4).
Обозначим минимальную длину интервала через . Используя модифицированный подход разбиения исходного ряда, матрица (5) перепишется в следующем виде:
. (14)
Использование разбиения, представленного на рис. 4, позволяет получить на интервалах и дополнительные оценки полезной составляющей и тем самым уменьшить ее погрешность.
При проведении аппроксимации на каждом интервале полиномом степени выражение (10) для вычисления результирующих оценок запишется в следующем виде:
(15)
На рис. 5 представлен пример обработки реализации модифицированным методом кусочного размножения оценок полезной составляющей. Представлена часть реализации для интервала .
Анализ рис. 5 показывает, что использование модифицированного подхода разбиения позволяет увеличить количество оценок на граничных интервалах и . Сравнительный анализ результатов, представленных на рис. 3 и 5, показывает, что в случае использования модифицированного алгоритма оценки полезной составляющей ее значения более близко расположены к значениям исходного сигнала, чем для случая немодифицированного подхода.
Рис. 5. Пример получения множества оценок полезного сигнала в каждом сечении исходного сигнала (1) и формирование на их основе результирующей оценки (2) при использовании модифицированного подхода разбиения исходной реализации на перекрывающиеся интервалы и отсутствии аддитивной шумовой составляющей
Предлагаемый метод обработки, несмотря на некоторую сложность представленных выражений, легко реализуется на современной элементной базе. Основу оценивания полезной составляющей на каждом элементарном интервале составляет метод наименьших квадратов с полиномиальной аппроксимирующей функцией. Условие обязательной полиномиальной аппроксимации на каждом участке является нежестким. Аппроксимация может быть произведена любой функцией из пространства (2). Так как интервал разбиения исходной выборки фиксирован, а также фиксирована аппроксимирующая функция в процессе обработки, это позволяет получить выражение оператора предлагаемого метода обработки.
2. с труктурная схема устройства, реализующая метод кусочного размножения оценок
Следует отметить, что предлагаемый метод обработки является симбиозом метода скользящего среднего и метода размножения оценок [3]. Используя выводы, при получении оценки полезного сигнала методом скользящего среднего, структурная схема устройства, его реализующая, показана на рис. 6. Устройство содержит буферный блок, блок аппроксимации, блок оценки и блок управления. Устройство, реализующее метод скользящего среднего, реализуется последовательной схемой. Исходная реализация поступает в буферный блок, где записываются первые значения . С буферного блока последние значения передаются в блок аппроксимации, где осуществляется их аппроксимация полиномиальной функцией, используя метод наименьших квадратов. Аппроксимирующей функцией является полином степени пространства (2). В блоке оценок осуществляется вычисление оценки полезного сигнала путем вычисления значения аппроксимирующего полинома в центральной точке интервала аппроксимации, что соответствует процедуре нахождения оценки методом простого скользящего среднего. Результирующая оценка поступает на выход устройства (рис. 6).
Рис. 6. Структурная схема устройства, реализующая метод скользящего среднего
С помощью блока управления задаются параметры обработки: длина скользящего интервала (ширина скользящего окна) и степень аппроксимирующего полинома . В случае, когда или , оценка на выходе устройства эквивалентна использованию метода простого скользящего среднего, а при или – методу взвешенного скользящего среднего.