Курсовая работа: Метод вращений решения СЛАУ
или
иначе, векторно-матричных уравнений Ах=f, где f=(f1, f2, …,fn)T – вектор свободных членов и
х=( х1, х2, …,хn)T – вектор неизвестных, а – вещественная n×n-матрица коэффициентов данной системы, во многом зависит от структуры и свойств матрицы А : размера, обусловленности, симметричности, заполненности и др.
Так размерность системы (т.е число n) является главным фактором, заставляющим вычислителей отвернуться от весьма привлекательных в теоретическом плане и приемлемых на практике при небольших n формул Крамера.
1.2 Метод Гаусса
1.2.1 Описание метода
Рассмотрим один из самых распространенных методов решения СЛАУ – метод Гаусса. Этот метод (который называют также методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.
Вычисления с помощью метода Гаусса состоят из двух основных этапов, называемых прямым ходом и обратным ходом. Прямой ход метода Гаусса заключается в последовательном исключении неизвестных из системы (1):
для преобразования её к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.
1.2.2 Алгоритм.
1.2.3 Апостериорная оценка погрешности.
1.2.4 Пример
1.3 Метод вращений линейных систем
1.3.1 Описание метода.
Как и в методе Гаусса, цель прямого хода преобразований в этом методе – приведение системы к треугольному виду последовательным обнулением поддиагональных элементов сначала первого столбца, затем второго и т.д.
Пусть с1 и s1 – некоторые отличные от нуля числа. Умножим первое уравнение исходной системы (1) на с1, второе на s1 и сложим их; полученным уравнением заменим первое уравнение системы. Затем первое уравнение исходной системы умножаем на –s1, второе – на c1 и результатом их сложения заменим второе уравнение. Таким образом, первые два уравнения (1) заменяются уравнениями
Отсюда .
Эти числа можно интерпретировать как косинус и синус некоторого угла (отсюда название метод вращений, каждый шаг такого преобразования можно рассматривать как вращение расширенной матрицы системы в плоскости обнуляемого индекса).
В результате преобразований получим систему
где
Далее первое уравнение системы заменяется новым, полученным сложением результатов умножения первого и третьего уравнений соотведлтственно на
а третье – уравнением, полученным при сложении результатов умножения тех же уравнений соответственно на –s2 и с2. Получим систему
где
Выполнив преобразование m-1 раз, придем к системе
Вид полученной системы такой же, как после первого этапа преобразований методом Гаусса. Эта система обладает следующим свойством: длина любого вектора-столбца (эвклидова норма) расширенной матрицы остается такой же, как у исходной матрицы. Следовательно, при выполнении преобразований не наблюдается рост элементов.