Курсовая работа: Методика преподавания курса "Матричные игры"

2 этап: показать данный метод на примерах.

3 этап: закрепить новый материал и дать домашнее задание.

Ход занятия.

1 этап. Для некоторых классов матричных игр практический интерес представляет графоаналитический метод. Этот метод состоит из двух частей. С начало в матричной игре графически выявляются качественные особенности решения, затем полная характеристика решения находиться аналитически.

Данный метод решения применяется в тех задачах, в которых у одного из игроков ровно две стратегии.

В основе этого метода лежит утверждение, что maxminf(x,y) =minmaxf(x,y) = Vв .

2 этап. Рассмотрим данный метод на задаче под названием «орлянка»

Пример 6.1: Два игрока независимо друг от друга называют числа, если оба числа имеют одинаковую четность, то один получает рубль, если разные, то рубль получает второй.

Решение: Данная игра представлена матрицей А

Здесь игрок 1 и 2 имеет две чистые стратегии. Решаем игру с позиции первого игрока.

Пусть его стратегия х = (α, 1-α), 0 ≤α≤1.

Вычислим хА=(α, 1-α)(1 -1)= (α- (1-α), -α+1-α)=(2α-1, 1-2α). (-1 1)

Обозначим f2 (α)=2α-1 и f2 (α)=1-2α.

Найдем maxmin (f1 (α), f2 (α))= max( min(2α-1, 1-2α)).

Для нахождения максимина приведем графическую иллюстрацию (1)

Вначале для каждого α € [0,1] найдем min(2α-1, 1-2α). На рисунке (1) такие минимумы для каждого α € [0,1] образуют ломанную – нижнюю огибающую MPQ. Затем на огибающей находим наибольшее значение, которое будет в точке P. Эта точка достигает при α € [0,1], которое является решением уравнения f1 = f2 , т.е. 2α-1= 1-2α. Здесь α=1/2. Вторая координата точки P будет 2*1/2-1=0. итак P(1/2, 0). В смешанном расширении данной игры max( min(2α-1, 1-2α))=0.

Максиминная стратегия первого игрока хн = (α, 1-α)=(1/2, 1/2). По аналогичной схеме найдем минимаксную стратегию второго игрока. Его стратегию обозначим y=(β, 1-β), 0≤β≤1.

Вычислим Аy=( 2β-1, 1-2β).

Обозначим f1 (β)= 2β-1, f2 (β)= 1-2β

Найдем minmax (f1 (β), f2 (β))= min (max (2β-1, 1-2β)).

Проведем геометрическую иллюстрацию на рисунке 2.

Для каждого β€[0,1] найдем min(2β-1, 1-2β).

На рисунке (2) такие минимумы для каждого β € [0,1] образуют ломанную – верхнюю огибающую RST. Затем на огибающей находим наименьшее значение, которое будет в точке S. Координаты точки S(1/2,0).

В смешанном расширении данной игры min (max (2β-1, 1-2β))=0.

YВ =( β, 1-β)=(1/2, 1/2) и выполняется условие, что

VH = maxmin аij =minmax аij = Vв . Значит цена игры V* =0 и седловая точка равна (х* , у* ) = ((1/2, 1/2), (1/2, 1/2)).

Ответ: (х* , у* )=((1/2, 1/2), (1/2, 1/2)), V* =0.

3 этап. Учитель повторяет последовательность решения данной задачи графоаналитическим методом. Дает домашнее задание.

Домашнее задание: придумать каждому ученику 1 задачу, чтобы она решалась графоаналитическим методом.

К-во Просмотров: 394
Бесплатно скачать Курсовая работа: Методика преподавания курса "Матричные игры"