Курсовая работа: Многомерный статистический анализ в системе SPSS

Рис. 15 Полная объясненная дисперсия

По таблице «Полной объясненной дисперсии» видно, что выделены 3 фактора, объясняющие 74,8 % вариаций переменных – построенная модель достаточно хорошая.

Теперь интерпретируем факторные признаки по «Матрице повернутых компонент»: (Рис.16).

Рис. 16 Матрица повернутых компонент

Фактор 1 наиболее тесно связан с уровнем реализации продуктов и имеет обратную зависимость от непроизводственных расходов.

Фактор 2 наиболее тесно связан с удельным весом закупочных материалов в общих расходах и удельным весом потерь от брака и имеет обратную зависимость от премий и вознаграждений на одного работника.

Фактор 3 наиболее тесно связан с уровнем фондоотдачи и оборачиваемость оборотных средств и имеет обратную зависимость от среднегодовой стоимости основных производственных фондов.

2. Указать наиболее благополучные и перспективные предприятия.

Для того, чтобы выявить наиболее благополучные предприятия проведем сортировку данных по 3 факторным признакам по убыванию. (Рис.17)

Рис. 17

Наиболее благополучными предприятиями следует считать: 13,4,5, так как в целом по 3 факторам их показатели занимают наиболее высокие и стабильные позиции.


Глава 4. Дискриминантный анализ

Оценка кредитоспособности юридических лиц в коммерческом банке

В качестве значимых показателей, характеризующих финансовое состояние организаций-заемщиков, банком выбраны шесть показателей (табл. 4.1.1):

QR (Х1) — коэффициент срочной ликвидности;

CR (Х2) — коэффициент текущей ликвидности;

EQ/TA (Х3) — коэффициент финансовой независимости;

TD/EQ (Х4) — суммарные обязательства к собственному капиталу;

ROS (Х5) — рентабельность продаж;

FAT (Х6) — оборачиваемость основных средств.

Таблица 4.1.1. Исходные данные

Заемщик

QR

CR

EQ/TA

TD/EQ

ROS, %

К-во Просмотров: 577
Бесплатно скачать Курсовая работа: Многомерный статистический анализ в системе SPSS